EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Inelastic Response and Damage Assessment of Reinforced Concrete Highway Bridges Subjected to Seismic Loadings

Download or read book Inelastic Response and Damage Assessment of Reinforced Concrete Highway Bridges Subjected to Seismic Loadings written by Michael E. Barenberg and published by . This book was released on 1986 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Design and Assessment of Bridges

Download or read book Seismic Design and Assessment of Bridges written by Andreas J Kappos and published by Springer Science & Business Media. This book was released on 2012-04-17 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.

Book Seismic Design and Retrofit of Bridges

Download or read book Seismic Design and Retrofit of Bridges written by M. J. N. Priestley and published by John Wiley & Sons. This book was released on 1996-04-12 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Book Performance based Seismic Bridge Design

Download or read book Performance based Seismic Bridge Design written by M. Lee Marsh and published by Transportation Research Board. This book was released on 2013 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.

Book A Data driven Seismic Damage Assessment Framework of Regional Highway Bridges

Download or read book A Data driven Seismic Damage Assessment Framework of Regional Highway Bridges written by Dong Wang and published by . This book was released on 2020 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent earthquake disasters have demonstrated the seismic vulnerability of highway bridge systems. Rapid seismic assessment of regional highway bridges is critical to help reduce severe loss of life and property. However, measurement of the regional scale system performance faces the challenge of dealing with the large uncertainty in structural properties and spatial characteristics. Traditionally, the numerical modeling approaches are established to simulate nonlinear response for each highway bridge across a regional portfolio. This process is largely limited by accuracy of model and computational effort. Especially some key structural component parameters are almost impossible to be retrieved for some ancient bridges. An alternative data-driven framework is developed to predict seismic responses or damage level of bridges using machine learning techniques. The proposed hierarchically structured framework enables a customized application in different scenarios. Firstly, the typical modeling technique for reinforcement concrete highway bridges is introduced using specific elements for different components. However, the modeling procedures are material-level parameter dependent and time consuming. The nonlinear analysis convergence is also a frustrating problem for numerical simulations. Due to these realistic limitations, a simple, fast and robust numerical model which can be developed with only component-level information needs to be adopted. It's shown that the bridge bent representation can be simplified as a single degree of freedom system. The force-displacement relationship of the bridge can be roughly approximated by a bilinear curve. So a simplified 2D bilinear model is adopted for highway bridges throughout the study. Secondly, the statistical distributions for selected bridge input parameters can be derived based on the regional bridge inventory. Then an iterative process by sampling and filtering input parameters can be used to generate as many bridges as possible candidates for a specific region. The proposed bridge models and selected historical ground motions will be utilized to develop a seismic response prediction model using machine learning for instrumented highway bridges. This study investigates the optimal features to represent the highway bridge and ground motion. Different regression models are applied for near-fault motions and far-field motions and similar performance can be achieved, which significantly outperformed the traditional methods. Finally, to predict the seismic response of the non-instrumented highway bridges whose ground motion information is missing, the kriging interpolation model is implemented first. Then graph network is exploited to improve the performance. Different rules are evaluated for constructing an undirected graph for the highway bridges in an active seismic region. Subsequently, the Node2vec model is conducted to extract the embedding for each node and a graph neural network is implemented to predict the seismic response. Furthermore, vast amounts of text description data from online social platforms can be used to help detect the potential severely damaged bridges rapidly once an earthquake happens. A Convolution Neural Network classification model is implemented to evaluate the overall damage level distribution based on the collected text data. GloVe model is used to generate the word vector as its distributed representation.

Book Seismic Design Aids for Nonlinear Pushover Analysis of Reinforced Concrete and Steel Bridges

Download or read book Seismic Design Aids for Nonlinear Pushover Analysis of Reinforced Concrete and Steel Bridges written by Jeffrey Ger and published by CRC Press. This book was released on 2016-04-19 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear static monotonic (pushover) analysis has become a common practice in performance-based bridge seismic design. The popularity of pushover analysis is due to its ability to identify the failure modes and the design limit states of bridge piers and to provide the progressive collapse sequence of damaged bridges when subjected to major earthq

Book Seismic Response of Concrete Bridges

Download or read book Seismic Response of Concrete Bridges written by Kosalram Krishnan and published by . This book was released on 1999 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Evaluation of Reinforced Concrete Bridges for Seismic Resistance

Download or read book Design and Evaluation of Reinforced Concrete Bridges for Seismic Resistance written by Mark Amos Aschheim and published by . This book was released on 1995 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Evaluation of Reinforced Concrete Bridges for Seismic Resistance

Download or read book Design and Evaluation of Reinforced Concrete Bridges for Seismic Resistance written by Mark Aschheim and published by . This book was released on 1997 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this report, seismic design approaches for reinforced concrete bridges are reviewed and uncertainties in seismic design and evaluation are discussed. The modeling of bridge components and systems is discussed, and analytical studies of the response series of simple bridges are made. The relative utility of several design approaches and stiffness assumptions for controlling seismic demands is assessed. Modeling of column and wall pier flexural and shear strengths is examined in detail, and available models for the inelastic shear strength of columns are compared with test data.

Book Structural Analysis and Retrofitting of Existing Highway Bridges Subjected to Strong Motion Seismic Loading

Download or read book Structural Analysis and Retrofitting of Existing Highway Bridges Subjected to Strong Motion Seismic Loading written by IIT Research Institute and published by . This book was released on 1975 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Investigation of the Effectiveness of Existing Bridge Design Methodology in Providing Adequate Structural Resistance to Seismic Disturbances

Download or read book An Investigation of the Effectiveness of Existing Bridge Design Methodology in Providing Adequate Structural Resistance to Seismic Disturbances written by United States. Federal Highway Administration. Structures and Applied Mechanics Division and published by . This book was released on 1978 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Performance of Reinforced Concrete Bridges Allowed to Uplift During Multi Directional Excitation

Download or read book Seismic Performance of Reinforced Concrete Bridges Allowed to Uplift During Multi Directional Excitation written by Andres Oscar Espinoza and published by . This book was released on 2011 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract Seismic Performance of Reinforced Concrete Bridges Allowed to Uplift During Multi-Directional Excitation by Andres Oscar Espinoza Doctor of Philosophy in Engineering - Civil and Environmental Engineering University of California, Berkeley Professor Stephen A. Mahin, Chair The behavior of bridges subjected to recent moderate and large earthquakes has led to bridge design detailed for better seismic performance, particularly through wider bridge foundations to handle larger expected design forces. Foundation uplift, which is not employed in conventional bridge design, has been identified as an important mechanism, in conjunction with structural yielding and soil-structure interaction that may dissipate energy during earthquakes. Preventing uplift through wider foundations looks past the technical and economical feasibility of allowing foundation uplift during seismic events. The research presented in this thesis is part of a larger experimental and analytical investigation to develop and validate design methods for bridge piers on shallow foundations allowed to uplift during seismic events. Several analytical and some experimental studies have been performed to assess rocking and or uplift of shallow foundation systems, however they have evaluated systems with a limited range of footing dimensions and seismic excitations. As such, there is an uncertainty in the information needed to base a performance evaluation and develop design methods. The purpose of this study is to investigate, through experimental and analytical studies, the seismic performance of uplifting bridge piers on shallow foundations when considering different ground motions and footing dimensions. As well as to identify key differences in performance evaluation criteria for conventional and uplifting bridge pier systems. The experimental study dynamically tested a single reinforced concrete bridge column specimen with three adjustable footing configurations grouped by footing dimension, and tested for various combinations of one, two, and three components of seismic excitation. Groups one and two evaluated uplifting systems where the column was limited to elastic loading levels while group three considered inelastic column loading levels. All test groups remained stable and exhibited some rocking and or uplift during testing. Analytical models were developed and validated using the experimental testing results to predict local and global footing and column response. Reliable estimates of forces and displacements during elastic and inelastic response were achieved. To assess the seismic performance of a range of bridge pier systems allowed to uplift a parametric investigation using the validated analytical models was performed in which the column was modeled per conventional design criteria to ensure adequate strength and flexural ductility. The parameters varied include footing width, ground motion excitation, and elastic or inelastic column response. Response of the uplifting bridge pier systems was found to be sensitive to the structural periods, magnitude of excitation, and footing width.

Book Post earthquake Damage Repair and Probabilistic Damage Control Approach for Reinforced Concrete Bridges

Download or read book Post earthquake Damage Repair and Probabilistic Damage Control Approach for Reinforced Concrete Bridges written by Amarjeet Saini and published by . This book was released on 2014 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objectives of the study were to develop post-earthquake repair methods using carbon fiber reinforced polymers (CFRP) and probabilistic damage control approach (PDCA) for reinforced concrete (RC) bridges. To develop repair methods, first repair objectives were defined. To define repair objectives, internal earthquake damage was quantified and correlated to a series of visible damage states (DSs). Bridge columns are designed to be the primary source of energy dissipation through nonlinear action under seismic loading and experience a wide range of apparent damage. Therefore, in the present study, DSs for bridge columns were used as a guide to define damage states for other bridge components. The degree of damage in columns depends on the earthquake level (seismic demand). Due to uncertainties in seismic demand and response, damage to bridge columns is probabilistic in nature. In the present study, in addition to bridge repair, a probabilistic damage control approach PDCA was developed for new and repaired bridge columns by incorporating the extent of lateral displacement nonlinearity defined by "Damage Index" (DI) and reliability analysis. The performance objective was defined based on predefined apparent DSs and the DSs were correlated to damage indices based on a previous study at the University of Nevada, Reno. The correlation between DI and DS was determined from a statistical analysis (resistance model) of over 140 response data measured from testing of 22 bridge column models subjected to seismic loads. To accomplish the objectives of this study, the present study was divided into seven parts. The first part was to conduct a detailed review of damage and repair methods in past earthquakes to identify gaps in repair methods. The second part was to develop practical methods to access the condition of an earthquake damaged bridge structural components in terms of apparent DS's. In the third part, repair design recommendations and design examples were developed to aid bridge engineers in quickly designing the number of CFRP layers based on the apparent DS. The fourth part was to establish a resistance model for the reliability analysis to develop a probabilistic based seismic design of bridge columns. In the fifth part, a load model was developed by conducting a large number of non-linear dynamic analyses on bridge bents. The uncertainties in ground motions, site class, bent configuration, earthquake return period were included in the analyses. In the sixth part of the study, the results of the reliability analyses were investigated, and a direct probabilistic design procedure was developed to calibrate design DI based on target reliability against failure. Finally, the PDCA methodology that was developed for conventional columns was used to extend the PDCA and reliability analysis approach to earthquake-damaged columns that have been repaired. Through this study, a new simple non-iterative method was developed for design of CFRP fabrics used in repair of concrete members. The step-by-step repair methods for bridge components that were developed as part of this study address a gap in rational and systematic repair tools that are needed subsequent to moderate and strong earthquakes. The PDCA that was developed and investigated provides design tools enabling designers and researchers to detail bridge columns for a target expected damage with an associated probability of occurrence and a reliability index.

Book Guide Specifications for Seismic Isolation Design

Download or read book Guide Specifications for Seismic Isolation Design written by and published by AASHTO. This book was released on 2010 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.