Download or read book Incomplete Data in Sample Surveys Proceedings of the symposium written by William Gregory Madow and published by . This book was released on 1983 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Incomplete Data in Sample Surveys Proceedings of the symposium written by William Gregory Madow and published by . This book was released on 1900 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multiple Imputation for Nonresponse in Surveys written by Donald B. Rubin and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.
Download or read book Incomplete Data in Sample Surveys Theory and bibliographies written by National Research Council (U.S.). Panel on Incomplete Data and published by . This book was released on 1983 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analysis of Incomplete Multivariate Data written by J.L. Schafer and published by CRC Press. This book was released on 1997-08-01 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-19 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
Download or read book Analysis of Survey Data written by R. L. Chambers and published by John Wiley & Sons. This book was released on 2003-08-01 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with statistical methods for the analysis of data collected from a survey. A survey could consist of data collected from a questionnaire or from measurements, such as those taken as part of a quality control process. Concerned with the statistical methods for the analysis of sample survey data, this book will update and extend the successful book edited by Skinner, Holt and Smith on 'Analysis of Complex Surveys'. The focus will be on methodological issues, which arise when applying statistical methods to sample survey data and will discuss in detail the impact of complex sampling schemes. Further issues, such as how to deal with missing data and measurement of error will also be critically discussed. There have significant improvements in statistical software which implement complex sampling schemes (eg SUDAAN, STATA, WESVAR, PC CARP ) in the last decade and there is greater need for practical advice for those analysing survey data. To ensure a broad audience, the statistical theory will be made accessible through the use of practical examples. This book will be accessible to a broad audience of statisticians but will primarily be of interest to practitioners analysing survey data. Increased awareness by social scientists of the variety of powerful statistical methods will make this book a useful reference.
Download or read book Handbook of Nonresponse in Household Surveys written by Jelke Bethlehem and published by John Wiley & Sons. This book was released on 2011-04-27 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, one-stop guide to identifying, reducing, and managing nonresponse in household surveys Nonresponse and its impact on the sample selection mechanism of a survey is a common problem that often arises while collecting survey data. Handbook of Nonresponse in Household Surveys is a complete guide to handling the nonresponse problem, outlining statistical methods and techniques for improving response rates and correcting response data. The authors begin with an introduction to the nonresponse problem along with basic concepts and definitions. Subsequent chapters present current theories and methods that enable survey researchers to skillfully account for nonresponse in their research. Exploring the latest developments in the field, the book also features: An introduction to the R-indicator as an indicator of survey quality Discussion of the different causes of nonresponse Extensive treatment of the selection and use of auxiliary information Best practices for re-approaching nonrespondents An overview of advanced nonresponse correction techniques Coverage of adaptive survey design Throughout the book, the treatment of each topic is presented in a uniform fashion. Following an introduction, each chapter presents the key theories and formulas underlying the topic and then illustrates common applications. Discussion concludes with a summary of the main concepts as well as a glossary of key terms and a set of exercises that allows readers to test their comprehension of the presented material. Examples using real survey data are provided, and a related website features additional data sets, which can be easily analyzed using Stata® or SPSS® software. Handbook of Nonresponse in Household Surveys is an essential reference for survey researchers working in the fields of business, economics, government, and the social sciences who gather, analyze, and draw results from data. It is also a suitable supplement for courses on survey methods at the upper-undergraduate and graduate levels.
Download or read book COMPSTAT written by David Edwards and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers assembled in this volume were presented at COMPSTAT 1988, the 8th biannual Symposium in Computational Statistics held under the auspices of the International Association for Statistical Computing. The current impact of computers on the theory and practice of statistics can be traced at many levels: on one level, the ubiquitous personal computer has made methods for explorative data analysis and display, rarely even described in conventional statistics textbooks, widely available. At another level, advances in computing power permit the development and application of statistical methods in ways that previously have been infeasible. Some of these methods, for example Bayesian methods, are deeply rooted in the philosophical basis of statistics, while others, for example dynamic graphics, present the classical statistical framework with quite novel perspectives. The contents of this volume provide a cross-section of current concerns and interests in computational statistics. A dominating topic is the application of artificial intelligence to statistics (and vice versa), where systems deserving the label" expert systems" are just beginning to emerge from the haze of good intentions with which they hitherto have been clouded. Other topics that are well represented include: nonparametric estimation, graphical techniques, algorithmic developments in all areas, projection pursuit and other computationally intensive methods. COMPSTAT symposia have been held biannually since 1974. This tradition has made COMPSTAT a major forum for advances in computational statistics with contributions from many countries in the world. Two new features have been introduced at COMPSTAT '88.
Download or read book Modern Analysis of Customer Surveys written by Ron S. Kenett and published by John Wiley & Sons. This book was released on 2012-01-30 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey data. Presents a general introduction to customer surveys, within an organization’s business cycle. Contains classical techniques with modern and non standard tools. Focuses on probabilistic techniques from the area of statistics/data analysis and covers all major recent developments. Accompanied by a supporting website containing datasets and R scripts. Customer survey specialists, quality managers and market researchers will benefit from this book as well as specialists in marketing, data mining and business intelligence fields.
Download or read book Multiple Imputation of Missing Data Using SAS written by Patricia Berglund and published by SAS Institute. This book was released on 2014-07 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. It provides both theoretical background and practical solutions for those working with incomplete data sets in an engaging example-driven format.
Download or read book Statistics of Income and Related Administrative Record Research 1988 1989 written by Beth Kilss and published by . This book was released on 1990 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistics of Income and Related Administrative Record Research written by American Statistical Association. Annual Meeting and published by . This book was released on 1986 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Estimating the Missing People in the Uk 1991 Population Census written by Dr. H.M. Wasiul Islam and published by AuthorHouse. This book was released on 2015-12-21 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to assess the coverage and the quality of the census data of the 1991 census, the Census Validation Survey (CVS) was carried out by the Social Survey Division of OPCS. The survey produced estimates of household spaces, households, and persons together with 95 percent confidence intervals. The CVS estimated the census undercount from six different samples, five of which were drawn from the census records and hence dependent. From the comparison between 1991 census results and demographic estimates, it was felt that CVS failed to estimate the true undercount figure of the 1991 census. Moreover, the CVS methodology was unable to estimate the undercount by age, sex, race, and geographic categories. This book presents methods for estimating population by age, sex, and race, as well as geographic categories. Three different estimators, Chandra-Sekar, Greenfield, and El-Sayed Nour, using information from two different sources (census and survey), are discussed. Adjustment factors are generally computed as the ratios of these estimates to the census counts. Average estimates from these three estimators may produce better adjustment factors. Models to produce more accurate estimates of the size of the closed population by using a second sample by matching with census and survey are also discussed. The models we present provide a mechanism for separating out the dependence between census and survey data induced by individual heterogeneity. The resulting data take the form of 2x2x2 table, in which only one of the eight cells is unknown. Using log-linear quasi-symmetry models we describe how to estimate the expected values of the observable cells of this table. To estimate the populations for local authorities (LA), a regression method is presented. The resulting estimates are found to be more accurate than the CVS estimates and were also close to the 1991 demographic estimates. We describe a methodology for estimating the accuracy of the dual systems estimates of population with the help of hypothetical data. The methodology is based on decompositions of the total error into components, such as sampling error, matching error, and other nonsampling errors. An imputation method and some recommendations are also discussed.
Download or read book DATA MINING written by K. P. SOMAN and published by PHI Learning Pvt. Ltd.. This book was released on 2006-01-01 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining is an emerging technology that has made its way into science, engineering, commerce and industry as many existing inference methods are obsolete for dealing with massive datasets that get accumulated in data warehouses. This comprehensive and up-to-date text aims at providing the reader with sufficient information about data mining methods and algorithms so that they can make use of these methods for solving real-world problems. The authors have taken care to include most of the widely used methods in data mining with simple examples so as to make the text ideal for classroom learning. To make the theory more comprehensible to the students, many illustrations have been used, and this in turn explains how certain parameters of interest change as the algorithm proceeds. Designed as a textbook for the undergraduate and postgraduate students of computer science, information technology, and master of computer applications, the book can also be used for MBA courses in Data Mining in Business, Business Intelligence, Marketing Research, and Health Care Management. Students of Bioinformatics will also find the text extremely useful. CD-ROM INCLUDE’ The accompanying CD contains Large collection of datasets. Animation on how to use WEKA and ExcelMiner to do data mining.
Download or read book Applied Missing Data Analysis in the Health Sciences written by Xiao-Hua Zhou and published by John Wiley & Sons. This book was released on 2014-05-19 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.
Download or read book Statistics of Income and Related Administrative Record Research written by American Statistical Association. Meeting and published by . This book was released on 1988 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: