EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book In situ Scanning Electron Microscopy in Materials Research

Download or read book In situ Scanning Electron Microscopy in Materials Research written by Klaus Wetzig and published by Wiley-VCH. This book was released on 1995-05-23 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors of this book give an instructive survey of the latest advancements in Scanning Electron Microscopy (SEM). During the last two decades there has been a new stage in the development of scanning electron microscopes as they are equipped with special devices for in situ investigations. Thus a "microlab" now exists inside the electron microscope. Different in situ sample treatments, based on mechanical, thermal and electrical effects, as well as on surface modification by radiation and environmental interaction processes, can be used to quantitatively study reactions at solid surfaces under well-defined external conditions. The objects under investigation can be of many kinds: engineering materials, electrical and magnetic materials (as used in microelectronics), products of technical and chemical industries, minerals, forensic objects, textiles, pharmaceutical, biological and archaeological specimens.

Book In situ Electron Microscopy

Download or read book In situ Electron Microscopy written by Gerhard Dehm and published by John Wiley & Sons. This book was released on 2012-05-30 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adopting a didactical approach from fundamentals to actual experiments and applications, this handbook and ready reference covers real-time observations using modern scanning electron microscopy and transmission electron microscopy, while also providing information on the required stages and samples. The text begins with introductory material and the basics, before describing advancements and applications in dynamic transmission electron microscopy and reflection electron microscopy. Subsequently, the techniques needed to determine growth processes, chemical reactions and oxidation, irradiation effects, mechanical, magnetic, and ferroelectric properties as well as cathodoluminiscence and electromigration are discussed.

Book In situ Electron Microscopy at High Resolution

Download or read book In situ Electron Microscopy at High Resolution written by Florian Banhart and published by World Scientific. This book was released on 2008 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry. In-situ techniques are hardly treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject.In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.

Book In Situ Microscopy in Materials Research

Download or read book In Situ Microscopy in Materials Research written by Pratibha L. Gai and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2. High Temperature UHV-STM System 264 3. Hydrogen Desorption Process on Si (111) Surface 264 4. (7x7) - (1 xl) Phase Transition on Si (111) Surface 271 Step Shifting under dc Electric Fields 275 5. 6. Conclusions 280 Acknowledgements and References 281 12. DYNAMIC OBSERVATION OF VORTICES IN SUPERCONDUCTORS USING ELECTRON WAVES 283 by Akira Tonomura 1. Introduction 283 2. Experimental Method 284 2. 1 Interference Microscopy 284 2. 2 Lorentz Microscopy 287 Observation of Superconducting Vortices 288 3. 3. 1 Superconducting Vortices Observed by Interference Microscopy 288 3. 1. 1 Profile Mode 288 3. 1. 2 Transmission Mode 291 3. 2 Superconducting Vortices Observed by Lorentz Microscopy 293 3. 3 Observation of Vortex Interaction with Pinning Centers 294 3. 3. 1 Surface Steps 295 3. 3. 2 Irradiated Point Defects 296 4. Conclusion 298 References 299 13. TEM STUDIES OF SOME STRUCTURALLY FLEXIBLE SOLIDS AND THEIR ASSOCIATED PHASE TRANSFORMATIONS 301 by Ray L. Withers and John G. Thompson 1. Introduction 301 2. Tetrahedrally Comer-Connected Framework Structures 302 3. Tetragonal a-PbO 311 4. Compositionally Flexible Anion-Deficient Fluorites and the "Defect Fluorite" to C-type Sesquioxide Transition 320 5. Summary and Conclusions 327 Acknowledgements and References 327 Author Index 331 Subject Index 333 List of Contributors A. ASEEV Institute of Semiconductor Physics, Russian Academy of Sciences Novosibirsk, 630090, pr. ac. , Lavrentjeva 13, RUSSIA E. BAUER Department of Physics and Astronomy, Arizona State University Tempe, AZ 85287-1504, U. S. A. G. H.

Book In situ Materials Characterization

Download or read book In situ Materials Characterization written by Alexander Ziegler and published by Springer Science & Business Media. This book was released on 2014-04-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.

Book In situ Electron Microscopy at High Resolution

Download or read book In situ Electron Microscopy at High Resolution written by Florian Banhart and published by World Scientific. This book was released on 2008 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry. In-situ techniques are hardly treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject.In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.

Book Field Emission Scanning Electron Microscopy

Download or read book Field Emission Scanning Electron Microscopy written by Nicolas Brodusch and published by Springer. This book was released on 2017-09-25 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage

Book Impact of Electron and Scanning Probe Microscopy on Materials Research

Download or read book Impact of Electron and Scanning Probe Microscopy on Materials Research written by David G. Rickerby and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Study Institute provided an opportunity for researchers in universities, industry and National and International Laboratories, from the disciplines ofmaterials science, physics, chemistry and engineering to meet together in an assessment of the impact of electron and scanning probe microscopy on advanced material research. Since these researchers have traditionally relied upon different approaches, due to their different scientific background, to advanced materials problem solving, presentations and discussion within the Institute sessions were initially devoted to developing a set ofmutually understood basic concepts, inherently related to different techniques ofcharacterization by microscopy and spectroscopy. Particular importance was placed on Electron Energy Loss Spectroscopy (EELS), Scanning Probe Microscopy (SPM), High Resolution Transmission and Scanning Electron Microscopy (HRTEM, HRSTEM) and Environmental Scanning Electron Microscopy (ESEM). It was recognized that the electronic structure derived directly from EELS analysis as well as from atomic positions in HRTEM or High Angle Annular Dark Field STEM can be used to understand the macroscopic behaviour of materials. The emphasis, however, was upon the analysis of the electronic band structure of grain boundaries, fundamental for the understanding of macroscopic quantities such as strength, cohesion, plasticity, etc.

Book Scanning Microscopy for Nanotechnology

Download or read book Scanning Microscopy for Nanotechnology written by Weilie Zhou and published by Springer Science & Business Media. This book was released on 2007-03-09 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.

Book Electron Microscopy in Science and Engineering

Download or read book Electron Microscopy in Science and Engineering written by Krishanu Biswas and published by Springer Nature. This book was released on 2022-02-09 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of Direction focuses on the rapid proliferation of electron microscopy (EM) for scientific as well as technological research. The content written by leading experts is intended to provide the capabilities of EM facilities, set at Indian Institute of Technology (IIT) Kanpur to solve various problems and caters to the needs of both internal and external users. The book provides a detailed and comprehensive viewpoint of the basic features and advanced capabilities of EM facilities to the scientific community. A large number of electron microscopes have been installed and utilized by researchers across various engineering and science departments; hence, this volume provides both breadth as well as depth of various EM facilities available at the institute.

Book Transmission Electron Microscopy

Download or read book Transmission Electron Microscopy written by C. Barry Carter and published by Springer. This book was released on 2016-08-24 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

Book Progress in Nanoscale Characterization and Manipulation

Download or read book Progress in Nanoscale Characterization and Manipulation written by Rongming Wang and published by Springer. This book was released on 2018-08-30 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on charged-particle optics and microscopy, as well as their applications in the materials sciences. Presenting a range of cutting-edge theoretical and methodological advances in electron microscopy and microanalysis, and examining their crucial roles in modern materials research, it offers a unique resource for all researchers who work in ultramicroscopy and/or materials research. The book addresses the growing opportunities in this field and introduces readers to the state of the art in charged-particle microscopy techniques. It showcases recent advances in scanning electron microscopy, transmission electron microscopy and helium ion microscopy, including advanced spectroscopy, spherical-corrected microscopy, focused-ion imaging and in-situ microscopy. Covering these and other essential topics, the book is intended to facilitate the development of microscopy techniques, inspire young researchers, and make a valuable contribution to the field.

Book Scanning Transmission Electron Microscopy

Download or read book Scanning Transmission Electron Microscopy written by Alina Bruma and published by CRC Press. This book was released on 2020-12-20 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.

Book In Situ Transmission Electron Microscopy Experiments

Download or read book In Situ Transmission Electron Microscopy Experiments written by Renu Sharma and published by John Wiley & Sons. This book was released on 2023-05-15 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-Situ Transmission Electron Microscopy Experiments Design and execute cutting-edge experiments with transmission electron microscopy using this essential guide In-situ microscopy is a recently-discovered and rapidly-developing approach to transmission electron microscopy (TEM) that allows for the study of atomic and/or molecular changes and processes while they are in progress. Experimental specimens are subjected to stimuli that replicate near real-world conditions and their effects are observed at a previously unprecedented scale. Though in-situ microscopy is becoming an increasingly important approach to TEM, there are no current texts combining an up-to-date overview of this cutting-edge set of techniques with the experience of in-situ TEM professionals. In-Situ Transmission Electron Microscopy Experiments meets this need with a work that synthesizes the collective experience of myriad collaborators. It constitutes a comprehensive guide for planning and performing in-situ TEM measurements, incorporating both fundamental principles and novel techniques. Its combination of technical detail and practical how-to advice makes it an indispensable introduction to this area of research. In-Situ Transmission Electron Microscopy Experiments readers will also find: Coverage of the entire experimental process, from method selection to experiment design to measurement and data analysis Detailed treatment of multimodal and correlative microscopy, data processing and machine learning, and more Discussion of future challenges and opportunities facing this field of research In-Situ Transmission Electron Microscopy Experiments is essential for graduate students, post-doctoral fellows, and early career researchers entering the field of in-situ TEM.

Book Handbook of Sample Preparation for Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Handbook of Sample Preparation for Scanning Electron Microscopy and X Ray Microanalysis written by Patrick Echlin and published by Springer Science & Business Media. This book was released on 2011-04-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.

Book In Situ Electron and Tunneling Microscopy of Dynamic Processes  Volume 404

Download or read book In Situ Electron and Tunneling Microscopy of Dynamic Processes Volume 404 written by Renu Sharma and published by . This book was released on 1996-08-26 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron microscopy techniques are among the most powerful methods for characterization of materials, with the ability to reveal both the atomic-scale structure and composition. This information may be used to elucidate macroscopic properties or to optimize materials synthesis and processing. Instrumentation and techniques for dynamic in situ experiments are undergoing rapid development and have recently been applied to a wide range of problems. This book focuses on time-resolved electron microscopy (including diffraction and spectroscopy), as well as novel instrumentation for temperature and pressure control. In addition to discussing the application of electron microscopy techniques to the in situ study of the kinetics, thermodynamics and mechanisms of reaction, the book also explores their utility as efficient methods of optimizing processing conditions. Imaging techniques featured include: scanning tunneling microscopy, high-resolution electron microscopy, dark field transmission and reflection electron microscopy, Lorentz microscopy, electron holography, scanning and low-energy electron microscopy and photoemission electron microscopy

Book In Situ Scanning Electron Microscopy in Materials Research

Download or read book In Situ Scanning Electron Microscopy in Materials Research written by Klaus Wetzig and published by Wiley-VCH. This book was released on 1995-05-09 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors of this book give an instructive survey of the latest advancements in Scanning Electron Microscopy (SEM). During the last two decades there has been a new stage in the development of scanning electron microscopes as they are equipped with special devices for in situ investigations. Thus a "microlab" now exists inside the electron microscope. Different in situ sample treatments, based on mechanical, thermal and electrical effects, as well as on surface modification by radiation and environmental interaction processes, can be used to quantitatively study reactions at solid surfaces under well-defined external conditions. The objects under investigation can be of many kinds: engineering materials, electrical and magnetic materials (as used in microelectronics), products of technical and chemical industries, minerals, forensic objects, textiles, pharmaceutical, biological and archaeological specimens.