EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improving Traffic Characterization to Enhance Pavement Design and Performance

Download or read book Improving Traffic Characterization to Enhance Pavement Design and Performance written by Mohammad A. Al-Yagout and published by . This book was released on 2004 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Traffic Characterization for a Mechanistic empirical Pavement Design

Download or read book Traffic Characterization for a Mechanistic empirical Pavement Design written by Jorge A. Prozzi and published by . This book was released on 2006 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this research study was to assess and address the implications of the axle load spectra approach proposed by the M-E Design Guide. In addition, recommendations were developed regarding traffic data needs and availability to aid in deciding the installation locations of future WIM stations in Texas. A methodology for specifying the required accuracy of WIM equipment based on the effect that this accuracy has on pavement performance prediction was also developed. Regarding traffic volume forecasting, a methodology is presented that allows optimum use of available data by simultaneously estimating traffic growth and seasonal traffic variability.

Book Improved Characterization of Truck Traffic Volumes and Axle Loads for Mechanistic empirical Pavement Design

Download or read book Improved Characterization of Truck Traffic Volumes and Axle Loads for Mechanistic empirical Pavement Design written by Ala R. Abbas and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recently developed mechanistic-empirical pavement design guide (MEPDG) requires a multitude of traffic inputs to be defined for the design of pavement structures, including the initial two-way annual average daily truck traffic (AADTT), directional and lane distribution factors, vehicle class distribution, monthly adjustment factors, hourly truck distribution factors, traffic growth rate, axle load spectra by truck class (Class 4 to Class 13) and axle type (single, tandem, tridem, and quad), and number of axles per truck. Since it is not always practical to obtain site-specific traffic data, the MEPDG assimilates a hierarchal level concept that allows pavements to be designed using statewide averages and MEPDG default values without compromising the accuracy of the pavement design. In this study, a Visual Basic for Application (VBA) code was developed to analyze continuous traffic monitoring data and generate site-specific and statewide traffic inputs. The traffic monitoring data was collected by 143 permanent traffic monitoring sites (93 automated vehicle classifier (AVC) and 50 weigh-in-motion (WIM) sites) distributed throughout the State of Ohio from 2006 to 2011. The sensitivity of the MEPDG to the various traffic inputs was evaluated using two baseline pavement designs, one for a new flexible pavement and one for a new rigid pavement. Key performance parameters for the flexible pavement included longitudinal (top-down) fatigue cracking, alligator (bottom-up) fatigue cracking, transverse (low-temperature) cracking, rutting, and smoothness (expressed using IRI), while key performance parameters for the rigid pavement included transverse cracking (% slabs cracked), joint faulting, and smoothness. The sensitivity analysis results revealed that flexible pavements are moderately sensitive to AADTT, growth rate, vehicle class distribution, and axle load spectra; and not sensitive to hourly distribution factors, monthly adjustment factors, and number of axles per truck. Furthermore, it was found that rigid pavements are moderately sensitive to AADTT, growth rate, hourly distribution factors, vehicle class distribution, and axle load spectra; and not sensitive to monthly adjustment factors and number of axles per truck. Therefore, it is recommended to estimate the AADTT and the vehicle class distribution from site-specific short-term or continuous counts and obtain the truck growth rate from ODOT Modeling and Forecasting Section (Certified Traffic). As for the other traffic inputs, statewide averages can be used for the hourly distribution factors, axle load spectra, and number of axles per truck; and MEPDG defaults can be used for the monthly adjustment factors.

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of Traffic Inputs for the Mechanistic empirical Pavement Design Guide in New York State

Download or read book Development of Traffic Inputs for the Mechanistic empirical Pavement Design Guide in New York State written by Ferdous Intaj and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Proper characterization of traffic data is a prerequisite for the determination of appropriate traffic inputs to Mechanistic-Empirical Pavement Design Guide (MEPDG). The development of proper traffic inputs helps reflect the traffic conditions over the life of pavement which would decrease the maintenance, repair and traffic disruptions and improve the traffic conditions of a road network. The objective of the study was to characterize the traffic data and suggest the sitespecific, regional or state wide average values for traffic inputs to MEPDG for New York State. Vehicle class distribution (VCD), monthly distribution factors (MDF), hourly distribution factors (HDF), average number of axle groups per vehicle (AGPV) and axle load spectra were obtained from vehicle classification and WIM sites in New York State for the years of 2007-2011. These traffic data was processed with TrafLoad software. Cluster analysis was performed on the processed VCD, MDF and HDF data collected during the time period. This statistical analysis could not be done for AGPV values and axle load spectra due to the unavailability of sufficient number of WIM sites. However, MEPDG runs were carried out to investigate the effect of the variability of traffic inputs on the pavement performance of typical new flexible and rigid pavement structures. The statistical analysis showed consistent results for VCD and HDF over the years. However, the results of statistical analysis on MDF were not consistent over the time period. Site specific values for VCD, MDF, AGPV and axle load spectra showed little variation with statewide average values after the cluster analysis and MEPDG runs for the vehicle classification and WIM data of the year of 2010. This was observed for both flexible and rigid pavements. However, HDF did not show any effect on the design of pavement with MEPDG. These findings were also verified from the analysis of vehicle classification and WIM data of the other years.

Book Analysis and Determination of Axle Load Spectra and Traffic Input for the Mechanistic Empirical Pavement Design Guide

Download or read book Analysis and Determination of Axle Load Spectra and Traffic Input for the Mechanistic Empirical Pavement Design Guide written by Yi Jiang and published by Purdue University Press. This book was released on 2008-03-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The values of equivalent single axle loads (ESAL) have been used to represent the vehicle loads in pavement design. To improve the pavement design procedures, a new method, called the Mechanistic-Empirical Pavement Design Guide (MEPDG), has been developed to use the axle load spectra to represent the vehicle loads in pavement design. These spectra represent the percentage of the total axle applications within each load interval for single, tandem, tridem, and quad axles. Using axle load spectra as the traffic input, the MEPDG method is able to analyze the impacts of varying traffic loads on pavement and provide an optimal pavement structure design. In addition, the new method can be used to analyze the effects of materials and the impacts of seasons, to compare rehabilitation strategies, and to perform forensic analyses of pavement conditions. The MEPDG utilizes mechanistic-empirical approaches to realistically characterize inservice pavements and allows the full integration of vehicular traffic loadings, climatic features, soil characteristics, and paving materials properties into the detailed analysis of pavement structural behaviors and the resulting pavement performance. In order to provide the traffic data input required by the MEPDG, the Indiana Department of Transportation (INDOT) made an effort to obtain truck traffic information from the traffic data collected through weigh-in-motion (WIM) stations. This study was conducted to create the truck traffic spectra and other traffic inputs for INDOT to implement the new pavement design method. Furthermore, the INDOT AADT data were used in this study to analyze the spatial distributions of the traffic volumes in Indiana and to obtain the spatial distributions of traffic volumes.

Book Pavement Design and Materials

Download or read book Pavement Design and Materials written by A. T. Papagiannakis and published by John Wiley & Sons. This book was released on 2017-02-22 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, state-of-the-art guide to pavement design and materials With innovations ranging from the advent of SuperpaveTM, the data generated by the Long Term Pavement Performance (LTPP) project, to the recent release of the Mechanistic-Empirical pavement design guide developed under NCHRP Study 1-37A, the field of pavement engineering is experiencing significant development. Pavement Design and Materials is a practical reference for both students and practicing engineers that explores all the aspects of pavement engineering, including materials, analysis, design, evaluation, and economic analysis. Historically, numerous techniques have been applied by a multitude of jurisdictions dealing with roadway pavements. This book focuses on the best-established, currently applicable techniques available. Pavement Design and Materials offers complete coverage of: The characterization of traffic input The characterization of pavement bases/subgrades and aggregates Asphalt binder and asphalt concrete characterization Portland cement and concrete characterization Analysis of flexible and rigid pavements Pavement evaluation Environmental effects on pavements The design of flexible and rigid pavements Pavement rehabilitation Economic analysis of alternative pavement designs The coverage is accompanied by suggestions for software for implementing various analytical techniques described in these chapters. These tools are easily accessible through the book’s companion Web site, which is constantly updated to ensure that the reader finds the most up-to-date software available.

Book Department of Transportation and Related Agencies Appropriations for 2002

Download or read book Department of Transportation and Related Agencies Appropriations for 2002 written by United States. Congress. House. Committee on Appropriations. Subcommittee on Dept. of Transportation and Related Agencies Appropriations and published by . This book was released on 2001 with total page 1036 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Local Calibration of Material Characterization Models for Performance based Flexible Pavement Design

Download or read book Local Calibration of Material Characterization Models for Performance based Flexible Pavement Design written by Alexander Afuberoh and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mechanistic Empirical Pavement Design Guide (MEPDG) method, currently known as Pavement ME, recommends using locally calibrated material characterization models developed from laboratory testing of local materials under specific environmental and traffic loading conditions. The Pavement ME design method offers a more realistic design procedure and reduces the uncertainty that arise from empirical design procedures. This thesis developed a locally calibrated indirect tensile (IDT) strength material model for low temperature cracking predictions of hot mix asphalt (HMA) in Manitoba, Canada. In addition, the research investigated the integration of locally calibrated HMA, and unbound granular material characterization models into the Pavement ME framework to improve the design of flexible pavements. Laboratory IDT testing was conducted on typical HMA mixtures containing extracted binders and varying percentages of reclaimed asphalt pavement (RAP). The laboratory measured IDT strengths were used to calibrate a local IDT strength predictive model for Manitoba. The predictions from the local Manitoba model were compared to the predictions from the global Pavement ME IDT model, and a Michigan calibrated IDT model, using a statistical analysis. It was found that the global Pavement ME IDT strength model, if used without local calibration, produced inaccurate predictions of the IDT strength for Manitoba mixtures. It was also found that binder characterization methods in Level 2 and Level 3 can significantly impact the accuracy of IDT strength predictions. A case study using developed local HMA, base, and subgrade material characterization models in Manitoba were compared to designs using default (Level 3) material input values in Pavement ME design software. The results of integrating the locally calibrated models for HMA, base and subgrade layers demonstrated that the locally calibrated materials model inputs produce lower pavement structural thicknesses with higher reliability in the predicted distresses when compared to the default materials inputs. The effect of using calibrated material inputs was more pronounced for higher traffic loadings. The results of the study demonstrate that the use of calibrated models can potentially produce optimized pavement thicknesses due to improved pavement designs.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Department of Transportation and Related Agencies Appropriations for 2003  2003 budget justifications

Download or read book Department of Transportation and Related Agencies Appropriations for 2003 2003 budget justifications written by United States. Congress. House. Committee on Appropriations. Subcommittee on Department of Transportation and Related Agencies Appropriations and published by . This book was released on 2002 with total page 1830 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Re calibration of Rigid Pavement Performance Models and Development of Traffic Inputs for Pavement me Design in Michigan

Download or read book Re calibration of Rigid Pavement Performance Models and Development of Traffic Inputs for Pavement me Design in Michigan written by Gopi Krishna Musunuru and published by . This book was released on 2019 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mechanistic-empirical pavement design guide (AASHTOWARE Pavement-ME) incorporates mechanistic models to estimate stresses, strains, and deformations in pavement layers using site-specific climatic, material, and traffic characteristics. These structural responses are used to predict pavement performance using empirical models (i.e., transfer functions). The transfer functions need to be calibrated to improve the accuracy of the performance predictions, reflecting the unique field conditions and design practices. The existing local calibrations of the performance models were performed by using version 2.0 of the Pavement-ME software. However, AASHTO has released versions 2.2 and 2.3 of the software since the completion of the last study. In the revised versions of the software, several bugs were fixed.Consequently, some performance models were modified in the newer software versions. As a result, the concrete pavement IRI predictions and the resulting PCC slab thicknesses have been impacted. The performance predictions varied significantly from the observed structural and function distresses, and hence, the performance models were recalibrated to enhance the confidence in pavement designs. Linear and nonlinear mixed-effects models were used for calibration to account for the non-independence among the data measured on the same sections over time. Also, climate data, material properties, and design parameters were used to develop a model for predicting permanent curl for each location to address some limitations of the Pavement-ME. This model can be used at the design stage to estimate permanent curl for a given location in Michigan.Pavement-ME also requires specific types of traffic data to design new or rehabilitated pavement structures. The traffic inputs include monthly adjustment factors (MAF), hourly distribution factors (HDF), vehicle class distributions (VCD), axle groups per vehicle (AGPV), and axle load distributions for different axle configurations. During the last seven years, new traffic data were collected, which reflect the recent economic growth, additional, and downgraded WIM sites. Hence it was appropriate to re-evaluate the current traffic inputs and incorporate any changes. Weight and classification data were obtained from 41 Weigh-in-Motion (WIM) sites located throughout the State of Michigan to develop Level 1 (site-specific) traffic inputs. Cluster analyses were conducted to group sites for the development of Level 2A inputs. Classification models such as decision trees, random forests, and Naive Bayes classifier were developed to assign a new site to these clusters; however, this proved difficult. An alternative simplified method to develop Level 2B inputs by grouping sites with similar attributes was also adopted. The optimal set of attributes for developing these Level 2B inputs were identified by using an algorithm developed in this study. The effects of the developed hierarchical traffic inputs on the predicted performance of rigid and flexible pavements were investigated using the Pavement-ME. Based on the statistical and practical significance of the life differences, appropriate levels were established for each traffic input. The methodology for developing traffic inputs is intuitive and practical for future updates. Also, there is a need to identify the change in traffic patterns to update the traffic inputs so that the pavement sections would not be overdesigned or under-designed. Models were developed where the short-term counts from the PTR sites can be used as inputs to check if the new traffic patterns cause any substantial differences in design life predictions.

Book Guidelines for Implementing NCHRP 1 37A M E Design Procedures  Literature review

Download or read book Guidelines for Implementing NCHRP 1 37A M E Design Procedures Literature review written by and published by . This book was released on 2009 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highway agencies across the nation are moving towards implementation of the new AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) for pavement design. The benefits of implementing the MEPDG for routine use in Ohio includes (1) achieving more cost effective and reliable pavement designs, (2) lower initial and life cycle costs to the agency, and (3) reduced highway user impact due to lane closures for maintenance and rehabilitation of pavements. Implementation of the MEPDG is a process that requires time and agency resources (staffing, training, testing facilities including equipment, and so on). A key requirement is validating the MEPDG's nationally calibrated pavement distress and smoothness prediction models when applied under Ohio conditions and performing local calibration if needed. Feasibility of using the MEPDG's national models in Ohio was investigated under this study using data from a limited number of LTPP projects located in Ohio. Results based on limited data showed inadequate goodness of fit and significant bias in a number of the MEPDG new HMA pavement and JPCP performance prediction models. Limited recalibration of these models showed promising results indicating that a full-scale recalibration effort using a more extensive database assembled from projects located throughout the state is feasible.

Book Department of Transportation and Related Agencies Appropriations for 2003

Download or read book Department of Transportation and Related Agencies Appropriations for 2003 written by United States. Congress. House. Committee on Appropriations. Subcommittee on Department of Transportation and Related Agencies Appropriations and published by . This book was released on 2002 with total page 1898 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Traffic Data Collection  Analysis  and Forecasting for Mechanistic Pavement Design

Download or read book Traffic Data Collection Analysis and Forecasting for Mechanistic Pavement Design written by Cambridge Systematics and published by Transportation Research Board. This book was released on 2005 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Department of Transportation and Related Agencies Appropriations for 2002  2002 budget justifications

Download or read book Department of Transportation and Related Agencies Appropriations for 2002 2002 budget justifications written by United States. Congress. House. Committee on Appropriations. Subcommittee on Department of Transportation and Related Agencies Appropriations and published by . This book was released on 2001 with total page 2022 pages. Available in PDF, EPUB and Kindle. Book excerpt: