Download or read book Bringing Bayesian Models to Life written by Mevin B. Hooten and published by CRC Press. This book was released on 2019-05-15 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.
Download or read book Spatial Dynamics and Ecology of Large Ungulate Populations in Tropical Forests of India written by N. Samba Kumar and published by Springer Nature. This book was released on 2020-11-02 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large ungulates in tropical forests are among the most threatened taxa of mammals. Excessive hunting, degradation of and encroachments on their natural habitats by humans have contributed to drastic reductions in wild ungulate populations in recent decades. As such, reliable assessments of ungulate-habitat relationships and the spatial dynamics of their populations are urgently needed to provide a scientific basis for conservation efforts. However, such rigorous assessments are methodologically complex and logistically difficult, and consequently many commonly used ungulate population survey methods do not address key problems. As a result of such deficiencies, key parameters related to population distribution, abundance, habitat ecology and management of tropical forest ungulates remain poorly understood. This book addresses this critical knowledge gap by examining how population abundance patterns in five threatened species of large ungulates vary across space in the tropical forests of the Nagarahole-Bandipur reserves in southwestern India. It also explains the development and application of an innovative methodology – spatially explicit line transect sampling – based on an advanced hierarchical modelling under the Bayesian inferential framework, which overcomes common methodological deficiencies in current ungulate surveys. The methods and results presented provide valuable reference material for researchers and professionals involved in studying and managing wild ungulate populations around the globe.
Download or read book Proceedings of the International Field Exploration and Development Conference 2023 written by Jia’en Lin and published by Springer Nature. This book was released on with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Enhance Oil and Gas Exploration with Data Driven Geophysical and Petrophysical Models written by Keith R. Holdaway and published by John Wiley & Sons. This book was released on 2017-10-04 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Big Data analytics methodologies to add value to geophysical and petrophysical exploration data Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models demonstrates a new approach to geophysics and petrophysics data analysis using the latest methods drawn from Big Data. Written by two geophysicists with a combined 30 years in the industry, this book shows you how to leverage continually maturing computational intelligence to gain deeper insight from specific exploration data. Case studies illustrate the value propositions of this alternative analytical workflow, and in-depth discussion addresses the many Big Data issues in geophysics and petrophysics. From data collection and context through real-world everyday applications, this book provides an essential resource for anyone involved in oil and gas exploration. Recent and continual advances in machine learning are driving a rapid increase in empirical modeling capabilities. This book shows you how these new tools and methodologies can enhance geophysical and petrophysical data analysis, increasing the value of your exploration data. Apply data-driven modeling concepts in a geophysical and petrophysical context Learn how to get more information out of models and simulations Add value to everyday tasks with the appropriate Big Data application Adjust methodology to suit diverse geophysical and petrophysical contexts Data-driven modeling focuses on analyzing the total data within a system, with the goal of uncovering connections between input and output without definitive knowledge of the system's physical behavior. This multi-faceted approach pushes the boundaries of conventional modeling, and brings diverse fields of study together to apply new information and technology in new and more valuable ways. Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models takes you beyond traditional deterministic interpretation to the future of exploration data analysis.
Download or read book Handbook of Spatial Epidemiology written by Andrew B. Lawson and published by CRC Press. This book was released on 2016-04-06 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Spatial Epidemiology explains how to model epidemiological problems and improve inference about disease etiology from a geographical perspective. Top epidemiologists, geographers, and statisticians share interdisciplinary viewpoints on analyzing spatial data and space-time variations in disease incidences. These analyses can provide imp
Download or read book Theoretical Aspects of Spatial Temporal Modeling written by Gareth William Peters and published by Springer. This book was released on 2015-12-24 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alpha-stable processes. In particular, it covers aspects of characterization via the spectral measure of heavy-tailed distributions and then provides an overview of their applications in wireless communications channel modeling. The final chapter concludes with an overview of analysis for probabilistic spatial percolation methods that are relevant in the modeling of graphical networks and connectivity applications in sensor networks, which also incorporate stochastic geometry features.
Download or read book Proceedings of the International Field Exploration and Development Conference 2021 written by Jia'en Lin and published by Springer Nature. This book was released on 2022-09-07 with total page 5829 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 11th International Field Exploration and Development Conference (IFEDC 2021). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.
Download or read book Spatial Cluster Modelling written by Andrew B. Lawson and published by CRC Press. This book was released on 2002-05-16 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this b
Download or read book Geospatial Health Data written by Paula Moraga and published by CRC Press. This book was released on 2019-11-26 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.
Download or read book Using R for Bayesian Spatial and Spatio Temporal Health Modeling written by Andrew B. Lawson and published by CRC Press. This book was released on 2021-04-28 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies. Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBAyes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.
Download or read book Exploring Evolutionary Heterogeneity with Change point Models Gaussian Markov Random Fields and Markov Chain Induced Counting Processes written by Volodymyr Minin and published by . This book was released on 2007 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards written by and published by . This book was released on 2008 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modelling Spatial and Spatial Temporal Data A Bayesian Approach written by Robert P. Haining and published by CRC Press. This book was released on 2020-01-27 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.
Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-09-12 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and ModelingSince the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflec
Download or read book Spatial and Syndromic Surveillance for Public Health written by Andrew B. Lawson and published by John Wiley & Sons. This book was released on 2005-05-13 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the events of 9/11 and in the current world climate, there is increasing concern of the impact of potential bioterrorism attacks. Spatial surveillance systems are used to detect changes in public health data, and alert us to possible outbreaks of disease, either from natural resources or from bioterrorism attacks. Statistical methods play a key role in spatial surveillance, as they are used to identify changes in data, and build models of that data in order to make predictions about future activity. This book is the first to provide an overview of all the current key methods in spatial surveillance, and present them in an accessible form, suitable for the public health professional. It features an abundance of examples using real data, highlighting the practical application of the methodology. It is edited and authored by leading researchers and practitioners in spatial surveillance methods. Provides an overview of the current key methods in spatial surveillance of public health data. Includes coverage of both single and multiple disease surveillance. Covers all of the key topics, including syndromic surveillance, spatial cluster detection, and Bayesian data mining.
Download or read book The Oxford Handbook of Quantitative Methods in Psychology Vol 1 written by Todd D. Little and published by Oxford University Press. This book was released on 2013-03-21 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oxford Handbook of Quantitative Methods in Psychology provides an accessible and comprehensive review of the current state-of-the-science and a one-stop source for learning and reviewing current best-practices in a quantitative methods across the social, behavioral, and educational sciences.
Download or read book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling written by Philippe Renard and published by Frontiers Media SA. This book was released on 2020-04-22 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.