EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improvement of Sweep Efficiency in Gasflooding

Download or read book Improvement of Sweep Efficiency in Gasflooding written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiency of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.

Book Improvement of Sweep Efficiency and Mobility Control in Gas Flooding

Download or read book Improvement of Sweep Efficiency and Mobility Control in Gas Flooding written by and published by . This book was released on 1991 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of carbon dioxide or other gases to extract crude oil from depleted reservoirs has been shown to be a technically successful process. However, optimized recoveries are often compromised by poor sweep efficiencies because of low gas viscosities and densities. A new process was investigated that potentially could improve sweep efficiencies by enhancing extractability properties of the injected gas with entrainers. Use of a capillary viscometer to evaluate enhanced viscosities appeared to be the best procedure for evaluating candidate compounds. A mathematical treatment was proposed based on predicting entrainer solubilities and minimum miscibility pressure alterations for carbon dioxide. However, use of many assumptions and approximations limited the effectiveness of this approach to qualitative evaluations. Some 87 compounds were evaluated using this mathematical treatment, and certain monoaromatic compounds were identified for further laboratory testing. 33 refs., 8 figs., 3 tabs.

Book Improvement of Sweep Efficiency and Mobility Control in Gas Flooding

Download or read book Improvement of Sweep Efficiency and Mobility Control in Gas Flooding written by National Institute for Petroleum and Energy Research (Bartlesville, Okla.). and published by . This book was released on 1991 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Waterflooding

Download or read book Waterflooding written by G. Paul Willhite and published by . This book was released on 1986 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.

Book DEVELOPMENT OF MORE EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

Download or read book DEVELOPMENT OF MORE EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS written by Gary A. Pope and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N{sub 2} gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application. Regarding Task 1, several very important results were achieved this period for subtask 1.2. In particular, we successfully developed a robust Windows-based code to calculate MMP and MME for fluid characterizations that consist of any number of pseudocomponents. We also were successful in developing a new technique to quantify the displacement mechanism of a gas flood--that is, to determine the fraction of a displacement that is vaporizing or condensing. These new technologies will be very important to develop new correlations and to determine important parameters for the design of gas injection floods. Regarding Task 2, several results were achieved: (1) A detailed study of the accuracy of foam simulation validates the model with fits to analytical fractional-flow solutions. It shows that there is no way to represent surfactant-concentration effects on foam without some numerical artifacts. (2) New results on capillary crossflow with foam show that this is much less detrimental than earlier studies had argued. (3) It was shown that the extremely useful model of Stone for gravity segregation with foam is rigorously true as long as the standard assumptions of fractional-flow theory apply. Without this proof, it was always possible that this powerful model would break down in some important application.

Book DEVELOPMENT OF MORE EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

Download or read book DEVELOPMENT OF MORE EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS written by and published by . This book was released on 2003 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO2 foam. Subtask 2.3 develops and applies a simulator for foam processes in field application. Regarding Task 1, several key results are described in this report relating to subtask 1.1. In particular, we show how for slimtube experiments, oil recoveries do not increase significantly with enrichments greater than the MME. For field projects, however, the optimum enrichment required to maximize recovery on a pattern scale may be different from the MME. The optimum enrichment is likely the result of greater mixing in reservoirs than in slimtubes. In addition, 2-D effects such as channeling, gravity tonguing, and crossflow can impact the enrichment selected. We also show the interplay between various mixing mechanisms, enrichment level, and numerical dispersion. The mixing mechanisms examined are mechanical dispersion, gravity crossflow, and viscous crossflow. UTCOMP is used to evaluate the effect of these mechanisms on recovery for different grid refinements, reservoir heterogeneities, injection boundary conditions, relative permeabilities, and numerical weighting methods including higher-order methods. For all simulations, the reservoir fluid used is a twelve-component oil displaced by gases enriched above the MME. The results for subtask 1.1 show that for 1-D enriched-gas floods, the recovery difference between displacements above the MME and those at or near the MME increases significantly with dispersion. The trend, however, is not monotonic and shows a maximum at a dispersivity (mixing level) of about 4 ft. The trend is independent of relative permeabilities and gas trapping for dispersivities less than about 4 ft. For 2-D enriched gas floods with slug injection, the difference in recovery generally increases as dispersion and crossflow increase. The magnitude of the recovery differences is less than observed for the 1-D displacements. Recovery differences for 2-D models are highly dependent on relative permeabilities and gas trapping. For water alternating gas (WAG) injection, the differences in recovery increase slightly as dispersion decreases. That is, the recovery difference is significantly greater with WAG at low levels of dispersion than with slug injection. For the cases examined, the magnitude of recovery difference varies from about 1 to 8 percent of the original oil-in-place (OOIP). Regarding Task 2, three results are described in this report: (1) New experiments with N2 foam examined the mobility of liquid injected following foam in alternating-slug (SAG) foam processes. These experiments were conducted in parallel with a simulation study of foam for acid diversion in well stimulation. The new experiments qualitatively confirm several of the trends predicted by simulation. (2) A literature study finds that the two steady-state foam-flow regimes seen with a wide variety of N2 foams also appears in many studies of CO2 foams, if the data are replotted in a format that makes these regimes clear. A new experimental study of dense CO2 foam here failed to reproduce these trends, however; the reason remains under investigation. (3) A number of published foam models were examined in terms of the two foam-flow regimes and using fractional-flow theory. At least two of the foam models predict the two foam-flow regimes. Fractional-flow theory predicts that large-scale simulation using one of the models would lead to numerical artifacts, however.

Book Recovery Improvement

    Book Details:
  • Author : Qiwei Wang
  • Publisher : Gulf Professional Publishing
  • Release : 2022-09-06
  • ISBN : 0128234385
  • Pages : 614 pages

Download or read book Recovery Improvement written by Qiwei Wang and published by Gulf Professional Publishing. This book was released on 2022-09-06 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications. Covers background information and practical guidelines for various recovery enhancement domains, including chapters on enhanced oil recovery in unconventional reservoirs and carbon sequestration in CO2 gas flooding for more environment-friendly and more sustainable initiatives Provides effective solutions to control chemistry-related issues and mitigation strategies for potential challenges from an industry list of experts and contributors Delivers both up-to-date research developments and practical applications, featuring various case studies

Book Advanced Reservoir Management and Engineering

Download or read book Advanced Reservoir Management and Engineering written by Tarek Ahmed and published by Gulf Professional Publishing. This book was released on 2011-09-28 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1. Fundamentals of Well Testing -- Chapter 2. Decline and Type-Curves Analysis -- Chapter 3. Water Influx -- Chapter 4. Unconventional Gas Reservoirs -- Chapter 5. Performance of Oil Reservoirs -- Chapter 6. Predicting Oil Reservoir Performance -- Chapter 7. Fundamentals of Enhanced Oil Recovery -- Chapter 8. Economic Analysis -- Chapter 9. Analysis of Fixed Capital Investments -- Chapter 10. Advanced Evaluation Approaches -- Chapter 11. Professionalism and Ethics.

Book Miscible Displacement

Download or read book Miscible Displacement written by Fred I. Stalkup and published by . This book was released on 1983 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Miscible Displacement Enhanced Oil Recovery

Download or read book Gas Miscible Displacement Enhanced Oil Recovery written by and published by . This book was released on 1989 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on gas flooding and miscible displacement, with an emphasis on improvement of CO2 flood performance is described. Low reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. CO2 flooding would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: the use of polymers for direct thickening of high-density carbon dioxide, mobile ''foam-like dispersions'' of carbon dioxide and aqueous surfactant, and in situ deposition of chemical precipitates. 17 refs., 22 figs., 8 tabs.

Book Innovations in Enhanced and Improved Oil Recovery   New Advances

Download or read book Innovations in Enhanced and Improved Oil Recovery New Advances written by Mansoor Zoveidavianpoor and published by BoD – Books on Demand. This book was released on 2024-04-24 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book navigates the evolving landscape of Enhanced Oil Recovery (EOR) and Improved Oil Recovery (IOR), covering diverse topics such as lithological dynamics in CO2-EOR, the impact of asphaltene precipitation in WAG implementation, progress in CO2-EOR and storage technology, in situ foam generation for unconventional fractured reservoirs, electromagnetic radiation effects on heavy oil upgrading, advancements in hydraulic fracturing, in situ synthesis of nanoparticles, and operational insights in the Bakken Shale. This comprehensive volume serves as an indispensable resource for professionals and researchers in the ever-changing field of enhanced and improved oil recovery.

Book Shared Earth Modeling

Download or read book Shared Earth Modeling written by John R. Fanchi and published by Elsevier. This book was released on 2002-08-25 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shared Earth Modeling introduces the reader to the processes and concepts needed to develop shared earth models. Shared earth modeling is a cutting-edge methodology that offers a synthesis of modeling paradigms to the geoscientist and petroleum engineer to increase reservoir output and profitability and decrease guesswork. Topics range from geology, petrophysics, and geophysics to reservoir engineering, reservoir simulation, and reservoir management.Shared Earth Modeling is a technique for combining the efforts of reservoir engineers, geophysicists, and petroleum geologists to create a simulation of a reservoir. Reservoir engineers, geophysicists, and petroleum geologists can create separate simulations of a reservoir that vary depending on the technology each scientist is using. Shared earth modeling allows these scientists to consolidate their findings and create an integrated simulation. This gives a more realistic picture of what the reservoir actually looks like, and thus can drastically cut the costs of drilling and time spent mapping the reservoir. First comprehensive publication about Shared Earth Modeling Details cutting edge methodology that provides integrated reservoir simulations

Book Gas Flood Efficiency Improvement by Polymer Injection

Download or read book Gas Flood Efficiency Improvement by Polymer Injection written by Edward L. Burwell and published by . This book was released on 1970 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Working Guide to Reservoir Engineering

Download or read book Working Guide to Reservoir Engineering written by William Lyons and published by Gulf Professional Publishing. This book was released on 2009-09-16 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working Guide to Reservoir Engineering provides an introduction to the fundamental concepts of reservoir engineering. The book begins by discussing basic concepts such as types of reservoir fluids, the properties of fluid containing rocks, and the properties of rocks containing multiple fluids. It then describes formation evaluation methods, including coring and core analysis, drill stem tests, logging, and initial estimation of reserves. The book explains the enhanced oil recovery process, which includes methods such as chemical flooding, gas injection, thermal recovery, technical screening, and laboratory design for enhanced recovery. Also included is a discussion of fluid movement in waterflooded reservoirs. Predict local variations within the reservoir Explain past reservoir performance Predict future reservoir performance of field Analyze economic optimization of each property Formulate a plan for the development of the field throughout its life Convert data from one discipline to another Extrapolate data from a few discrete points to the entire reservoir

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).