EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

Download or read book Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction written by Hamidreza Salimi and published by . This book was released on 2010 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world's oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a number of naturally occurring fractures have a significant effect on reservoir fluid flow. The reservoir rock between the fractures is called the matrix system. Fractured-reservoir simulations completely differ from conventional-reservoir simulations. The challenge of upscaling is to give an accurate representation of the interaction between fractures and matrix blocks. From the geological point of view, fractured reservoirs can exhibit a number of topologically different configurations. These are reservoirs built from (1) matrix blocks that are bounded by fracture planes in all directions (totally fractured reservoirs, TFRs, or sugar cube), (2) matrix blocks that are bounded only by more or less vertical fracture planes (vertically fractured reservoirs, VFRs), and (3) matrix blocks that form a connected domain interdispersed with fractures (partially fractured reservoirs, PFRs). Only the first configuration, which only exceptionally occurs, is considered in conventional simulators. These simulators use the transfer-function and shape-factor approach. The advantage of this approach is that it can quantify, albeit in a semi-empirical way, in a large variety of cases the fracture-matrix interaction. Moreover, it is fast in terms of computational effort. This thesis adopts a more fundamental approach based on an upscaling methodology called homogenization. It has the advantage of allowing a physically more realistic description of recovery from fractured reservoirs. In addition, it can also be more directly related to the geological model, e.g., the configurations mentioned above. We expect that a comparison of the physically more realistic approach (using homogenization) with.

Book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs

Download or read book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs written by United States. National Petroleum Technology Office and published by . This book was released on 1999 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs

Download or read book Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs written by Dheiaa Alfarge and published by Elsevier. This book was released on 2020-09-09 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs, Volume 67 provides important guidance on which EOR methods work in shale and tight oil reservoirs. This book helps readers learn the main fluid and rock properties of shale and tight reservoirs—which are the main target for EOR techniques—and understand the physical and chemical mechanisms for the injected EOR fluids to enhance oil recovery in shale and tight oil reservoirs. The book explains the effects of complex hydraulic fractures and natural fractures on the performance of each EOR technique. The book describes the parameters affecting obtained oil recovery by injecting different EOR methods in both the microscopic and macroscopic levels of ULR. This book also provides proxy models to associate the functionality of the improved oil recovery by injecting different EOR methods with different operating parameters, rock, and fluid properties. The book provides profesasionals working in the petroleum industry the know-how to conduct a successful project for different EOR methods in shale plays, while it also helps academics and students in understanding the basics and principles that make the performance of EOR methods so different in conventional reservoirs and unconventional formations. Provides a general workflow for how to conduct a successful project for different EOR methods in these shale plays Provides general guidelines for how to select the best EOR method according to the reservoir characteristics and wells stimulation criteria Explains the basics and principles that make the performance of EOR methods so different in conventional reservoirs versus unconventional formations

Book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. Introduces emerging hybrid EOR processes and their technical details Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Book Modeling Wettability Alteration in Naturally Fractured Carbonate Reservoirs

Download or read book Modeling Wettability Alteration in Naturally Fractured Carbonate Reservoirs written by Ali Goudarzi and published by . This book was released on 2011 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for energy and new oil reservoirs around the world has increased rapidly while oil recovery from depleted reservoirs has become more difficult. Oil production from fractured carbonate reservoirs by water flooding is often inefficient due to the commonly oil-wet nature of matrix rocks. Chemical enhanced oil recovery (EOR) processes such as surfactant-induced wettability alteration and interfacial tension reduction are required to decrease the residual oil saturation in matrix blocks, leading to incremental oil recovery. However, improvement in recovery will depend on the degree of wettability alteration and interfacial tension (IFT) reduction, which in turn are functions of matrix permeability, fracture intensity, temperature, pressure, and fluid properties. The oil recovery from fractured carbonate reservoirs is frequently considered to be dominated by the spontaneous imbibition mechanism which is a combination of viscous, capillary, and gravity forces. The primary purpose of this study is to model wettability alteration in the lab scale for both coreflood and imbibition cell tests using the chemical flooding reservoir simulator. The experimental recovery data for fractured carbonate rocks with different petrophysical properties were history-matched with UTCHEM, The University of Texas in-house compositional chemical flooding simulator, using a highly heterogeneous permeability distribution. Extensive simulation work demonstrates the validity and ranges of applicability of upscaled procedures, and also indicates the importance of viscous and capillary forces in larger fields. The results of this work will be useful for designing field-scale chemical EOR processes.

Book Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Download or read book Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs written by Emad Walid Al Shalabi and published by Gulf Professional Publishing. This book was released on 2017-06-14 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today’s more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors’ own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Book Selected Topics on Improved Oil Recovery

Download or read book Selected Topics on Improved Oil Recovery written by Berihun Mamo Negash and published by Springer. This book was released on 2018-03-15 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents articles from the International Conference on Improved Oil Recovery, CIOR 2017, held in Bandung, Indonesia. Highlighting novel technologies in the area of Improved Oil Recovery, it discusses a range of topics, including enhanced oil recovery, hydraulic fracturing, production optimization, petrophysics and formation evaluation.

Book Oil Recovery from Naturally Fractured Reservoirs by Steam Injection Methods  Final Report

Download or read book Oil Recovery from Naturally Fractured Reservoirs by Steam Injection Methods Final Report written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

Book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Download or read book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation written by Kamy Sepehrnoori and published by Elsevier. This book was released on 2020-08-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Book Enhanced Oil Recovery in Shale and Tight Reservoirs

Download or read book Enhanced Oil Recovery in Shale and Tight Reservoirs written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2019-11-07 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets. Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR

Book Improved Reservoir Models and Production Forecasting Techniques for Multi Stage Fractured Hydrocarbon Wells

Download or read book Improved Reservoir Models and Production Forecasting Techniques for Multi Stage Fractured Hydrocarbon Wells written by Ruud Weijermars and published by MDPI. This book was released on 2019-12-12 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The massive increase in energy demand and the related rapid development of unconventional reservoirs has opened up exciting new energy supply opportunities along with new, seemingly intractable engineering and research challenges. The energy industry has primarily depended on a heuristic approach—rather than a systematic approach—to optimize and tackle the various challenges when developing new and improving the performance of existing unconventional reservoirs. Industry needs accurate estimations of well production performance and of the cumulative estimated ultimate reserves, accounting for uncertainty. This Special Issue presents 10 original and high-quality research articles related to the modeling of unconventional reservoirs, which showcase advanced methods for fractured reservoir simulation, and improved production forecasting techniques.

Book Optimization of Chemical Enhanced Oil Recovery Methods for Naturally Fractured Carbonate Reservoirs

Download or read book Optimization of Chemical Enhanced Oil Recovery Methods for Naturally Fractured Carbonate Reservoirs written by Miguel Mejia (M.S. in Engineering) and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbonate oil reservoirs are important energy sources, accounting for over 60% of the world’s oil reserves. Recovering oil from these reservoirs is challenging, especially if they are naturally fractured. Waterflooding is inefficient because water flows through the highly permeable fractures and bypasses the rock matrix, where most of the oil is stored. Mixed-wettability, low matrix permeability, and large heterogeneities also make secondary oil recovery challenging. Chemical enhanced oil recovery with alkali, surfactants, and polymer addresses some of these challenges. Surfactants can lower the interfacial tension to decrease the residual oil saturation. Polymer increases the viscosity of the injected water, improving the microscopic and macroscopic sweep efficiency. This research involves the optimization of some chemical flooding methods for naturally fractured carbonates. Coreflood experiments and the UTCHEM reservoir simulator were used to investigate alkali-surfactant flooding in fractured Texas Cream limestone cores. A decrease in fracture mobility caused by viscous phase trapping in the fracture was identified as the main reason for the high observed oil recoveries. Due to the uncertain properties of the viscous phase trapped in the fracture, polyethylene oxide (PEO) polymer was investigated for mobility control. Coreflood experiments demonstrated the viability for using PEO in 18 mD cores. PEO significantly improved oil recovery in a fractured core. The viscosity and cloud point of the PEO were systematically investigated. The polymer concentration, temperature, salinity and hardness were varied, and several additives were added to potentially increase the range of conditions for which PEO could be applied to EOR. Methyl-urea, urea, and ethanol were identified as additives to increase the cloud point and viscosity of PEO. Finally, machine learning models including support vector machine, random forest, and neural network models were trained to predict the aqueous stability of surfactant solutions and phase behavior of microemulsions. A large database of over 600 phase behavior experiments and over 800 aqueous stability experiments was used to train the models. The models may be used to guide the process of selection of surfactants that produce sufficiently high solubilization ratios

Book Assisted History Matching for Unconventional Reservoirs

Download or read book Assisted History Matching for Unconventional Reservoirs written by Sutthaporn Tripoppoom and published by Elsevier. This book was released on 2021-08-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: As unconventional reservoir activity grows in demand, reservoir engineers relying on history matching are challenged with this time-consuming task in order to characterize hydraulic fracture and reservoir properties, which are expensive and difficult to obtain. Assisted History Matching for Unconventional Reservoirs delivers a critical tool for today's engineers proposing an Assisted History Matching (AHM) workflow. The AHM workflow has benefits of quantifying uncertainty without bias or being trapped in any local minima and this reference helps the engineer integrate an efficient and non-intrusive model for fractures that work with any commercial simulator. Additional benefits include various applications of field case studies such as the Marcellus shale play and visuals on the advantages and disadvantages of alternative models. Rounding out with additional references for deeper learning, Assisted History Matching for Unconventional Reservoirs gives reservoir engineers a holistic view on how to model today's fractures and unconventional reservoirs. Provides understanding on simulations for hydraulic fractures, natural fractures, and shale reservoirs using embedded discrete fracture model (EDFM) Reviews automatic and assisted history matching algorithms including visuals on advantages and limitations of each model Captures data on uncertainties of fractures and reservoir properties for better probabilistic production forecasting and well placement

Book Geologic Analysis of Naturally Fractured Reservoirs

Download or read book Geologic Analysis of Naturally Fractured Reservoirs written by Ronald Nelson and published by Elsevier. This book was released on 2001-08-24 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs Provides real-life illustrations through case histories and field and laboratory data

Book Simulation of Enhanced Oil Recovery in Naturally Fractured Reservoirs Using Dual porosity Models

Download or read book Simulation of Enhanced Oil Recovery in Naturally Fractured Reservoirs Using Dual porosity Models written by Ali Mohammed Hmood Al-Rudaini and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basic Concepts in Enhanced Oil Recovery Processes

Download or read book Basic Concepts in Enhanced Oil Recovery Processes written by M. Baviere and published by Springer. This book was released on 1991-09-30 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: