Download or read book Machine Learning for Medical Image Reconstruction written by Farah Deeba and published by Springer Nature. This book was released on 2020-10-21 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
Download or read book The Theory and Practice of 3D PET written by B. Bendriem and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.
Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Download or read book Machine Learning in Medical Imaging written by Mingxia Liu and published by Springer Nature. This book was released on 2020-10-02 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 68 papers presented in this volume were carefully reviewed and selected from 101 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Download or read book Artificial Intelligence and PET Imaging Part 1 An Issue of PET Clinics written by Babak Saboury and published by Elsevier Health Sciences. This book was released on 2021-09-21 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and PET Imaging, Part 1, An Issue of PET Clinics, E-Book
Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Download or read book Machine Learning for Medical Image Reconstruction written by Florian Knoll and published by Springer Nature. This book was released on 2019-10-24 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.
Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
Download or read book Small Animal SPECT Imaging written by Matthew A. Kupinski and published by Springer Science & Business Media. This book was released on 2007-05-27 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small-Animal SPECT Imaging is an edited work derived from the first workshop on Small-Animal SPECT Imaging held January 14-16, 2004 at the University of Arizona, Tucson, AZ, USA. The overall goal of the meeting and therefore this volume is to promote information exchange and collaboration between the research groups developing systems for small-animal applications. Topics include the biomedical significance of small-animal imaging, an overview of detector technologies including scintillation cameras and semi-conductor arrays, imager design and data acquisition systems, animal handling and anesthesia issues, objective assessment of image quality, and system modeling and reconstruction algorithms.
Download or read book Machine Learning Algorithms for Signal and Image Processing written by Deepika Ghai and published by John Wiley & Sons. This book was released on 2022-11-18 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Algorithms for Signal and Image Processing Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.
Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
Download or read book Machine Learning for Tomographic Imaging written by Ge Wang and published by Programme: Iop Expanding Physi. This book was released on 2019-12-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning represents a paradigm shift in tomographic imaging, and image reconstruction is a new frontier of machine learning. This book will meet the needs of those who want to catch the wave of smart imaging. The book targets graduate students and researchers in the imaging community. Open network software, working datasets, and multimedia will be included. The first of its kind in the emerging field of deep reconstruction and deep imaging, Machine Learning for Tomographic Imaging presents the most essential elements, latest progresses and an in-depth perspective on this important topic.
Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Download or read book Biomedical Data Mining for Information Retrieval written by Sujata Dash and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Download or read book Clinical PET MRI written by Onofrio Antonio Catalano and published by Academic Press. This book was released on 2022-09-07 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical PET/MR presents the state-of-the-art of PET/MR, guiding the reader from how to scan patients, how to read and report the studies, and how keep an eye on what is clinically relevant for a patient's care. Each chapter starts with the clinical scenario and then moves to pertinent imaging, addressing the need of a clinical PET/MR book written by world experts in both clinical and imaging fields. It discusses the clinical application of PET/MR in diverse subspecialties such as head and neck, neurology, cardiovascular, pediatrics, chest, bone, hematology, breast, hepatobiliary pancreatic, genitourinary, gynecology, and gastrointestinal tract. This book is a valuable resource for radiologists, oncologists and members of the biomedical field who need to learn more about clinical applications of PET/MR. - Presents a description of robust acquisition protocols to teach readers how to scan PET/MR patients, from tracers to sequences - Provides a clinical background section in each chapter to help readers focus on the real clinical issues that need to be addressed in the medical report - Written by world authorities in the field in a didactic manner to describe the real status of imaging
Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.