EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improved Deep Convolutional Neural Networks  DCNN  Approaches for Computer Vision and Bio medical Imaging

Download or read book Improved Deep Convolutional Neural Networks DCNN Approaches for Computer Vision and Bio medical Imaging written by Md Zahangir Alom and published by . This book was released on 2018 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is showing tremendous success in variety of application domains and demonstrates state-of-the-art performance over traditional machine learning approaches in the fields of Computer Vision, Speech Recognition, Natural Language Processing (NLP), Bio-Medical imaging, Computational Pathology, and many more. This thesis presents several improved Deep Convolutional Neural Network (DCNN) models including the Inception Recurrent Convolutional Neural Network (IRCNN) and Inception Recurrent Residual Convolutional Neural Networks (IRRCNN), a Recurrent U-Net (RU-Net), a Recurrent Residual U-Net (R2U-Net) model, a R2U-Net regression model, and a Densely Connected Recurrent Network (DCRN). These models are evaluated for classification, segmentation, and detection tasks in computer vision, Bio-medical imaging, and computational pathology applications. There are four key contribution areas in this thesis.The first contribution area is the introduction of two improved DCNN models for classification tasks: IRCNN and IRRCNN, which utilize the power of the Recurrent Convolutional Neural Network (RCNN), the Inception Network, and the Residual Network (ResNet). In addition, we have evaluated the impact of recurrent convolutional layers on DenseNet which is called Densely Connected Recurrent Network (DCRN). The performance of the IRCNN, DCRN, and IRRCNN models was investigated with a set of experiments and computer vision tasks where we used several publicly available datasets including MNIST, CIFAR 10, CIFAR 100, SVHN, CU3D-100, and Tiny ImageNet-200. The experimental results show that IRCNN, DCRN, and IRRCNN provide superior performance compared to the equivalent DCNN based methods including equivalent RCNN, ResNet, Inception V3, DenseNet, and Inception Residual Network (Inception V-4) with the same number of network parameters for different computer vision tasks. The second contribution area is the introduction of two different models including a Recurrent U-Net and Recurrent Residual U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, the Residual Network, the RCNN, and U-Net for image segmentation tasks. These proposed architectures have several advantages for segmentation tasks over the existing DL methods. First, a residual unit helps when training deep architectures. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with the same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets for blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including SegNet, U-Net and Residual U-Net (ResU-Net) in different Bio-medical segmentation tasks.The third contribution area is the introduction of an R2U-Net based regression model which is named University of Dayton Network (UD-Net) and is used for end-to-end detection tasks in digital pathology. To generalize these advanced DCNN models, we have applied classification, segmentation, and detection tasks in Digital Pathology Image Analysis (DPIA) including: microscopic blood cell classification, Breast Cancer Classification (BCC), invasive ductal carcinoma detection, and lymphoma classification, nuclei segmentation, epithelium segmentation, tubule segmentation, lymphocyte detection, and mitosis detection. The experiments have been conducted on different publicly available datasets and evaluated with different performance metrics. The results demonstrate superior performance compared to existing DCNN based methods. The fourth contribution area is the introduction of an image reconstruction technique using Convolutional Sparse Coding (CSC) on IBM's TrueNorth Neuromorphic computing system and the results demonstrate promising sparse reconstructions for two different benchmarks: MNIST and CIFAR-10. In 2016, IBM's release of a deep learning framework for DCNNs called Energy Efficient Deep Neuromorphic Networks (EEDN). EEDN shows promise for delivering high accuracies across different benchmark while consuming very low power using IBM's TrueNorth chip. We have empirically evaluated the performance of different DCNN architectures implemented within the EEDN framework to discover the most efficient way to implement DCNN models for object classification tasks using the TrueNorth system. The results show that for datasets with large numbers of classes, wider networks perform better when compared to deep networks comprised of nearly the same core complexity on IBM's TrueNorth system. In addition, we have proposed an effective quantization approach for Recurrent Neural Networks (RNN): Long Short-Term Memory (SLTM), Gated Recurrent Unit (GRU), and Convolutional LSTM (ConvLSTM). Furthermore, an NP-hard optimization problem called Quadratic Unconstrained Binary Optimization (QUBO) has solved with vanilla RNN on IBM's Neuromorphic computing system.

Book Deep Learning and Convolutional Neural Networks for Medical Image Computing

Download or read book Deep Learning and Convolutional Neural Networks for Medical Image Computing written by Le Lu and published by Springer. This book was released on 2017-07-12 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Book Convolutional Neural Networks for Medical Image Processing Applications

Download or read book Convolutional Neural Networks for Medical Image Processing Applications written by Saban Ozturk and published by CRC Press. This book was released on 2022-12-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rise in living standards increases the expectation of people in almost every field. At the forefront is health. Over the past few centuries, there have been major developments in healthcare. Medical device technology and developments in artificial intelligence (AI) are among the most important ones. The improving technology and our ability to harness the technology effectively by means such as AI have led to unprecedented advances, resulting in early diagnosis of diseases. AI algorithms enable the fast and early evaluation of images from medical devices to maximize the benefits. While developments in the field of AI were quickly adapted to the field of health, in some cases this contributed to the formation of innovative artificial intelligence algorithms. Today, the most effective artificial intelligence method is accepted as deep learning. Convolutional neural network (CNN) architectures are deep learning algorithms used for image processing. This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.

Book Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Download or read book Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics written by Le Lu and published by Springer Nature. This book was released on 2019-09-19 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Book Deep Learning for Medical Image Analysis

Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Book Deep Learning in Biomedical Signal and Medical Imaging

Download or read book Deep Learning in Biomedical Signal and Medical Imaging written by Ngangbam Herojit Singh and published by CRC Press. This book was released on 2024-09-30 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers detailed information on biomedical imaging using Deep Convolutional Neural Networks (Deep CNN). It focuses on different types of biomedical images to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis and image processing perspectives. Deep Learning in Biomedical Signal and Medical Imaging discusses classification, segmentation, detection, tracking, and retrieval applications of non-invasive methods such as EEG, ECG, EMG, MRI, fMRI, CT, and X-RAY, amongst others. It surveys the most recent techniques and approaches in this field, with both broad coverage and enough depth to be of practical use to working professionals. It includes examples of the application of signal and image processing employing Deep CNN to Alzheimer’s, brain tumor, skin cancer, breast cancer, and stroke prediction, as well as ECG and EEG signals. This book offers enough fundamental and technical information on these techniques, approaches, and related problems without overcrowding the reader’s head. It presents the results of the latest investigations in the field of Deep CNN for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine the fundamental theory of artificial intelligence (AI), machine learning (ML,) and Deep CNN with practical applications in biology and medicine. Certainly, the list of topics covered in this book is not exhaustive, but these topics will shed light on the implications of the presented techniques and approaches on other topics in biomedical data analysis. The book is written for graduate students, researchers, and professionals in biomedical engineering, electrical engineering, signal process engineering, biomedical imaging, and computer science. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educators who are working in the context of the topics.

Book Machine Learning and Deep Learning Techniques for Medical Image Recognition

Download or read book Machine Learning and Deep Learning Techniques for Medical Image Recognition written by Ben Othman Soufiene and published by CRC Press. This book was released on 2023-12-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Deep Learning Techniques for Medical Image Recognition comprehensively reviews deep learning-based algorithms in medical image analysis problems including medical image processing. It includes a detailed review of deep learning approaches for semantic object detection and segmentation in medical image computing and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks with the theory and varied selection of techniques for semantic segmentation using deep learning principles in medical imaging supported by practical examples. Features: Offers important key aspects in the development and implementation of machine learning and deep learning approaches toward developing prediction tools and models and improving medical diagnosis Teaches how machine learning and deep learning algorithms are applied to a broad range of application areas, including chest X-ray, breast computer-aided detection, lung and chest, microscopy, and pathology Covers common research problems in medical image analysis and their challenges Focuses on aspects of deep learning and machine learning for combating COVID-19 Includes pertinent case studies This book is aimed at researchers and graduate students in computer engineering, artificial intelligence and machine learning, and biomedical imaging.

Book Deep Learning in Medical Image Analysis

Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Book Convolutional Neural Networks for Medical Applications

Download or read book Convolutional Neural Networks for Medical Applications written by Teik Toe Teoh and published by Springer Nature. This book was released on 2023-03-23 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convolutional Neural Networks for Medical Applications consists of research investigated by the author, containing state-of-the-art knowledge, authored by Dr Teoh Teik Toe, in applying Convolutional Neural Networks (CNNs) to the medical imagery domain. This book will expose researchers to various applications and techniques applied with deep learning on medical images, as well as unique techniques to enhance the performance of these networks.Through the various chapters and topics covered, this book provides knowledge about the fundamentals of deep learning to a common reader while allowing a research scholar to identify some futuristic problem areas. The topics covered include brain tumor classification, pneumonia image classification, white blood cell classification, skin cancer classification and diabetic retinopathy detection. The first chapter will begin by introducing various topics used in training CNNs to help readers with common concepts covered across the book. Each chapter begins by providing information about the disease, its implications to the affected and how the use of CNNs can help to tackle issues faced in healthcare. Readers would be exposed to various performance enhancement techniques, which have been tried and tested successfully, such as specific data augmentations and image processing techniques utilized to improve the accuracy of the models.

Book Deep Learning Models for Medical Imaging

Download or read book Deep Learning Models for Medical Imaging written by KC Santosh and published by Academic Press. This book was released on 2021-09-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ‘with’ and ‘without’ transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. Provides a step-by-step approach to develop deep learning models Presents case studies showing end-to-end implementation (source codes: available upon request)

Book Advances in Deep Generative Models for Medical Artificial Intelligence

Download or read book Advances in Deep Generative Models for Medical Artificial Intelligence written by Hazrat Ali and published by Springer Nature. This book was released on 2023-12-16 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models. This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.

Book Deep Learning in Biomedical Signal and Medical Imaging

Download or read book Deep Learning in Biomedical Signal and Medical Imaging written by Ngangbam Herojit Singh and published by . This book was released on 2025 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book offers detailed information on biomedical imaging using Deep Convolutional Neural Networks (Deep CNN). It focuses on different types of biomedical images to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, and image processing perspectives. Deep Learning in Biomedical Signal and Medical Imaging discusses classification, segmentation, detection, tracking, and retrieval applications of non-invasive methods such as EEG, ECG, EMG, MRI, fMRI, CT, and X-RAY, amongst others. It surveys the most recent techniques and approaches in this field, with both broad coverage and enough depth to be of practical use to working professionals. It includes examples of the application of signal and image processing employing Deep CNN to Alzheimer, Brain Tumor, Skin Cancer, Breast Cancer, and stroke prediction, as well as ECG and EEG signals. This book offers enough fundamental and technical information on these techniques, approaches, and related problems without overcrowding the reader's head. It presents the results of the latest investigations in the field of Deep CNN for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine the fundamental theory of Artificial Intelligence (AI), Machine Learning (ML,) and Deep CNN with practical applications in Biology and Medicine. Certainly, the list of topics covered in this book is not exhaustive but these topics will shed light on the implications of the presented techniques and approaches on other topics in biomedical data analysis. The book is written for graduate students, researchers, and professionals in biomedical engineering, electrical engineering, signal process engineering, biomedical imaging, and computer science. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educators who are working in the context of the topics"--

Book Deep Learning for Biomedical Image Reconstruction

Download or read book Deep Learning for Biomedical Image Reconstruction written by Jong Chul Ye and published by Cambridge University Press. This book was released on 2023-09-30 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. The background theory of deep learning is introduced step-by-step, and by incorporating modeling fundamentals this book explains how to implement deep learning in a variety of modalities, including X-ray, CT, MRI and others. Real-world examples demonstrate an interdisciplinary approach to medical image reconstruction processes, featuring numerous imaging applications. Recent clinical studies and innovative research activity in generative models and mathematical theory will inspire the reader towards new frontiers. This book is ideal for graduate students in Electrical or Biomedical Engineering or Medical Physics.

Book Handbook of Deep Learning in Biomedical Engineering

Download or read book Handbook of Deep Learning in Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2020-11-12 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography

Book Advances in Deep Learning for Medical Image Analysis

Download or read book Advances in Deep Learning for Medical Image Analysis written by Archana Mire and published by CRC Press. This book was released on 2022-04-26 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer’s disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.

Book Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Download or read book Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support written by M. Jorge Cardoso and published by Springer. This book was released on 2017-09-07 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Book Computational Analysis and Deep Learning for Medical Care

Download or read book Computational Analysis and Deep Learning for Medical Care written by Amit Kumar Tyagi and published by John Wiley & Sons. This book was released on 2021-08-10 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.