EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Implicit Finite Difference Time Domain Methods

Download or read book Implicit Finite Difference Time Domain Methods written by Hasan Khaled Rouf and published by LAP Lambert Academic Publishing. This book was released on 2011-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The efficiency of the conventional, explicit finite difference time domain (FDTD) method is constrained by the upper limit on the temporal discretization imposed by the Courant-Friedrich-Lewy (CFL) stability condition. Therefore, there is a growing interest in overcoming this limitation by employing implicit, unconditionally stable FDTD methods for which time-step and space-step can be independently chosen. Unconditionally stable Crank Nicolson method has not been widely used in time domain electromagnetics despite its high accuracy and low anisotropy. This work presents a novel three-dimensional frequency dependent fully implicit Crank Nicolson FDTD method. A modified frequency dependent alternating direction implicit FDTD (FD-ADI-FDTD) method, having better accuracy than the normal FD-ADI-FDTD method, is also presented.

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by Routledge. This book was released on 2018-05-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book The Finite Difference Time Domain Method for Electromagnetics with MATLAB   Simulations

Download or read book The Finite Difference Time Domain Method for Electromagnetics with MATLAB Simulations written by Atef Z. Elsherbeni and published by IET. This book was released on 2015-11-25 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the best books on computational electromagnetics both for graduate students focusing on electromagnetics problems and for practicing engineering professionals in industry and government. It is designed as an advanced textbook and self-study guide to the FDTD method of solving EM problems and simulations. This latest edition has been expanded to include 5 entirely new chapters on advanced topics in the mainstream of FDTD practice. In addition to advanced techniques it also includes applications and examples, and some 'tricks and traps' of using MATLAB to achieve them. Compared to the previous version the second edition is more complete and is a good reference for someone who is performing FDTD research. This book is part of the ACES Series on Computational Electromagnetics and Engineering. Supplementary material can be found at the IET's ebook page Supplementary materials for professors are available upon request via email to [email protected].

Book Time Domain Methods in Electrodynamics

Download or read book Time Domain Methods in Electrodynamics written by Peter Russer and published by Springer Science & Business Media. This book was released on 2008-09-26 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.

Book Finite difference Time domain Methods for Electromagnetic Problems Involving Biological Bodies

Download or read book Finite difference Time domain Methods for Electromagnetic Problems Involving Biological Bodies written by Stefan Schmidt and published by . This book was released on 2005 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: alternating direction implicit, sub-cell model, finite difference, ADI, mutual inductance, partial inductance method, thin-strut, bioelectromagnetics, SAR, PML, specific absorption rate, FDTD, perfectly matched layer, PIM, absorbing boundary condition, finite-difference time-domain.

Book An implicit characteristic based method for electromagnetics

Download or read book An implicit characteristic based method for electromagnetics written by and published by DIANE Publishing. This book was released on with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to the Finite Difference Time Domain  FDTD  Method for Electromagnetics

Download or read book Introduction to the Finite Difference Time Domain FDTD Method for Electromagnetics written by Stephen Gedney and published by Springer Nature. This book was released on 2022-05-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Book Numerical Differential Equations

    Book Details:
  • Author : Source Wikipedia
  • Publisher : University-Press.org
  • Release : 2013-09
  • ISBN : 9781230579849
  • Pages : 116 pages

Download or read book Numerical Differential Equations written by Source Wikipedia and published by University-Press.org. This book was released on 2013-09 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 114. Chapters: Discrete element method, Finite difference, Shooting method, Finite-difference time-domain method, Finite element method, MUSCL scheme, Constraint algorithm, Verlet integration, Runge-Kutta methods, Linear multistep method, Stiff equation, Particle-in-cell, Crank-Nicolson method, Finite element method in structural mechanics, Numerical ordinary differential equations, Direct stiffness method, Flux limiter, Smoothed-particle hydrodynamics, Cea's lemma, Finite difference method, Spectral method, Euler method, Transmission line matrix method, List of Runge-Kutta methods, Discrete Laplace operator, Finite pointset method, Eigenvalues and eigenvectors of the second derivative, Finite volume method, Moving particle semi-implicit method, Discrete Poisson equation, Modal analysis using FEM, Boundary element method, Shock capturing methods, Parallel mesh generation, Galerkin method, Cell lists, Godunov's theorem, Five-point stencil, Vorticity confinement, Symplectic integrator, Split-step method, Perfectly matched layer, Weak formulation, Finite difference coefficient, Finite difference methods for option pricing, Energy drift, Meshfree methods, Geometric integrator, Direct multiple shooting method, Kronecker sum of discrete Laplacians, Image-based meshing, Adaptive stepsize, Numerov's method, Method of lines, Semi-implicit Euler method, Upwind scheme, Trefftz method, Interval boundary element method, Beeman's algorithm, AUSM, Rayleigh-Ritz method, Adaptive mesh refinement, Compact stencil, Godunov's scheme, Partial element equivalent circuit, Alternating direction implicit method, History of numerical solution of differential equations using computers, Variational integrator, Dormand-Prince method, Extended finite element method, Fast multipole method, Midpoint method, Explicit and implicit methods, Immersed...

Book Computational Nanotechnology Using Finite Difference Time Domain

Download or read book Computational Nanotechnology Using Finite Difference Time Domain written by Sarhan M. Musa and published by CRC Press. This book was released on 2017-12-19 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe. Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts. Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

Book Time Domain Finite Difference Computation for Maxwell s Equations

Download or read book Time Domain Finite Difference Computation for Maxwell s Equations written by Jiayuan Fang and published by . This book was released on 1989 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A New Finite Difference Time Domain Method to Solve Maxwell   s Equations

Download or read book A New Finite Difference Time Domain Method to Solve Maxwell s Equations written by and published by . This book was released on 2018 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have constructed a new finite-difference time-domain (FDTD) method in this project. Our new algorithm focuses on the most important and more challenging transverse electric (TE) case. In this case, the electric field is discontinuous across the interface between different dielectric media. We use an electric permittivity that stays as a constant in each medium, and magnetic permittivity that is constant in the whole domain. To handle the interface between different media, we introduce new effective permittivities that incorporates electromagnetic fields boundary conditions. That is, across the interface between two different media, the tangential component of the electric field and the normal component of the electric displacement are continuous. Meanwhile, the magnetic field stays as continuous in the whole domain. Our new algorithm is built based upon the integral version of the Maxwell's equations as well as the above continuity conditions. The theoretical analysis shows that the new algorithm can reach second-order convergence O(∆x2)with mesh size ∆x. The subsequent numerical results demonstrate this algorithm is very stable and its convergence order can reach very close to second order, considering accumulation of some unexpected numerical approximation and truncation errors. In fact, our algorithm has clearly demonstrated significant improvement over all related FDTD methods using effective permittivities reported in the literature. Therefore, our new algorithm turns out to be the most effective and stable FDTD method to solve Maxwell's equations involving multiple media.

Book Numerical Electromagnetics

    Book Details:
  • Author : Umran S. Inan
  • Publisher : Cambridge University Press
  • Release : 2011-04-07
  • ISBN : 1139497987
  • Pages : 405 pages

Download or read book Numerical Electromagnetics written by Umran S. Inan and published by Cambridge University Press. This book was released on 2011-04-07 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Book Conservative Finite Difference Methods on General Grids

Download or read book Conservative Finite Difference Methods on General Grids written by Mikhail Shashkov and published by CRC Press. This book was released on 2018-02-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.

Book An Investigation of the Numerical Characteristics of Finite difference Methods as Applied to the Time domain Maxwell s Equations

Download or read book An Investigation of the Numerical Characteristics of Finite difference Methods as Applied to the Time domain Maxwell s Equations written by Hoang Vinh and published by . This book was released on 1991 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introductory Finite Difference Methods for PDEs

Download or read book Introductory Finite Difference Methods for PDEs written by and published by Bookboon. This book was released on with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in FDTD Computational Electrodynamics

Download or read book Advances in FDTD Computational Electrodynamics written by Allen Taflove and published by Artech House. This book was released on 2013 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.