EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software

Download or read book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software written by and published by . This book was released on 2014 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Mechanistic-Empirical Pavement Design Guide and AASHTOWare Pavement ME Design (TM) Software Overview -- Survey of Agency Pavement Design Practices -- Common Elements of Agency Implementation Plans -- Case Examples of Agency Implementation -- Conclusions.

Book Implementing the Mechanistic empirical Pavement Design Guide

Download or read book Implementing the Mechanistic empirical Pavement Design Guide written by Brian Coree and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Implementation Plan for the New Mechanistic empirical Pavement Design Guide

Download or read book Implementation Plan for the New Mechanistic empirical Pavement Design Guide written by Y. Richard Kim and published by . This book was released on 2007 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic empirical Pavement Design Guide Implementation Plan

Download or read book Mechanistic empirical Pavement Design Guide Implementation Plan written by Todd E. Hoerner and published by . This book was released on 2007 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.

Book Truck Traffic and Load Spectra of Indiana Roadways for the Mechanistic Empirical Pavement Design Guide

Download or read book Truck Traffic and Load Spectra of Indiana Roadways for the Mechanistic Empirical Pavement Design Guide written by Jieyi Bao and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mechanistic-Empirical Pavement Design Guide (MEPDG) has been employed for pavement design by the Indiana Department of Transportation (INDOT) since 2009 and has generated efficient pavement designs with a lower cost. It has been demonstrated that the success of MEPDG implementation depends largely on a high level of accuracy associated with the information supplied as design inputs. Vehicular traffic loading is one of the key factors that may cause not only pavement structural failures, such as fatigue cracking and rutting, but also functional surface distresses, including friction and smoothness. In particular, truck load spectra play a critical role in all aspects of the pavement structure design. Inaccurate traffic information will yield an incorrect estimate of pavement thickness, which can either make the pavement fail prematurely in the case of under-designed thickness or increase construction cost in the case of over-designed thickness. The primary objective of this study was to update the traffic design input module, and thus to improve the current INDOT pavement design procedures. Efforts were made to reclassify truck traffic categories to accurately account for the specific axle load spectra on two-lane roads with low truck traffic and interstate routes with very high truck traffic. The traffic input module was updated with the most recent data to better reflect the axle load spectra for pavement design. Vehicle platoons were analyzed to better understand the truck traffic characteristics. The unclassified vehicles by traffic recording devices were examined and analyzed to identify possible causes of the inaccurate data collection. Bus traffic in the Indiana urban areas was investigated to provide additional information for highway engineers with respect to city streets as well as highway sections passing through urban areas. New equivalent single axle load (ESAL) values were determined based on the updated traffic data. In addition, a truck traffic data repository and visualization model and a TABLEAU interactive visualization dashboard model were developed for easy access, view, storage, and analysis of MEPDG related traffic data.

Book Consideration of Preservation in Pavement Design and Analysis Procedures

Download or read book Consideration of Preservation in Pavement Design and Analysis Procedures written by and published by . This book was released on 2015 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Report 810: Consideration of Preservation in Pavement Design and Analysis Procedures explores the effects of preservation on pavement performance and service life and describes three different approaches for considering these effects in pavement design and analysis procedures. The report may serve as a basis for developing procedures for incorporating preservation in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide: A Manual of Practice (MEPDG) and the AASHTOWare Pavement ME Design software. Initially, the scope of this project intended to develop procedures for incorporating pavement preservation treatments into the MEPDG design analysis process that would become part of the MEPDG Manual of Practice. However, it was determined that sufficient data were not available to support the development of such procedures. Appendices A through I are available online only." --

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by and published by . This book was released on 2015 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide  M E PDG  in Connecticut

Download or read book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide M E PDG in Connecticut written by Iliya Yut and published by . This book was released on 2014 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis of the Mechanistic empirical Pavement Design Guide Performance Predictions

Download or read book Analysis of the Mechanistic empirical Pavement Design Guide Performance Predictions written by Stacey D. Diefenderfer and published by . This book was released on 2010 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.

Book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide  M EPDG  in Connecticut

Download or read book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide M EPDG in Connecticut written by Iliya Yut and published by . This book was released on 2017 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic Empirical Pavement Design Guide  MEPDG  Method Implemented to Estimate Damage in Flexible and Rigid Pavements

Download or read book Mechanistic Empirical Pavement Design Guide MEPDG Method Implemented to Estimate Damage in Flexible and Rigid Pavements written by Tenzin Gusto and published by . This book was released on 2016 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implementation of the Empirical-Mechanistic Pavement Design Guide (MEPDG) method for flexible and rigid pavements requires numerous input parameters. Most of these parameters can be easily determined while some require best estimates that are usually extracted from available literature. This thesis identifies the most critical input parameters in terms of their effects on the damage of pavements and their influence on the determination of the number of corrective maintenance cycles to be performed during the design life of pavements. It was found that for flexible pavement, change in the average monthly temperature by as little as results in large differences in the number of corrective maintenance cycles. Also, consistently with simple mechanics concepts, pavements on stiffer foundations performed better under the load and hence, required fewer number of the corrective maintenance cycles than those founded on more flexible soils. Also, variations in truck weights affected the outcome in terms of the estimated number of corrective maintenance cycles for flexible pavement. Hence, better estimates of the number of corrective maintenance cycles can be obtained when the analysis was based on larger numbers of truck samples. On the contrary, no significant difference in the final estimation of the number of corrective maintenance cycles was found for rigid pavements even when the average monthly temperatures were increased or decreased by as much as . Moreover, no major difference was observed when a larger sample of trucks was used as input for the analysis. Similarly, change in ambient temperature which is directly related to the differential temperature on the top and the bottom of the slab that may lead to the curling of the slab and faulting, was found not to be critical. Similar to the results obtained for flexible pavements, rigid pavement with stiffer foundation properties performed better in terms of the number of corrective maintenance cycles as they required fewer corrective maintenance cycles.

Book Preparation for Implementation of the Mechanistic empirical Pavement Design Guide in Michigan

Download or read book Preparation for Implementation of the Mechanistic empirical Pavement Design Guide in Michigan written by Syed Waqar Haider and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of Part 3 was to locally calibrate and validate the mechanistic-empirical pavement design guide (Pavement-ME) performance models to Michigan conditions. The local calibration of the performance models in the Pavement-ME is a challenging task, especially due to data limitations. A total of 108 and 20 reconstruct flexible and rigid pavement candidate projects, respectively, were selected. Similarly, a total of 33 and 8 rehabilitated pavement projects for flexible and rigid pavements, respectively were selected for the local calibration. The selection process considered pavement type, age, geographical location, and number of condition data collection cycles. The selected set of pavement section met the following data requirements (a) adequate number of sections for each performance model, (b) a wide range of inputs related to traffic, climate, design and material characterization, (c) a reasonable extent and occurrence of observed condition data over time. The national calibrated performance models were evaluated by using the data for the selected pavement sections. The results showed that the global models in the Pavement-ME don't adequately predict pavement performance for Michigan conditions. Therefore, local calibration of the models is essential. The local calibrations for all performance prediction models for flexible and rigid pavements were performed for multiple datasets (reconstruct, rehabilitation and a combination of both) and using robust statistical techniques (e.g. repeated split sampling and bootstrapping). The results of local calibration and validation of various models show that the locally calibrated model significantly improve the performance predictions for Michigan conditions. The local calibration coefficients for all performance models are documented in the report. The report also includes the recommendations on the most appropriate calibration coefficients for each of the performance models in Michigan along with the future guidelines and data needs.

Book Review of the New Mechanistic empirical Pavement Design Guide   a Material Characterization Perspective

Download or read book Review of the New Mechanistic empirical Pavement Design Guide a Material Characterization Perspective written by and published by . This book was released on 2005 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characterization of pavement materials in the three hierarchical design levels of the proposed mechanistic-empirical pavement design (MEPD) guide involves application of the dynamic modulus technique for asphalt concrete and the resilient modulus for unbound materials. This approach, if adequately implemented, is expected to improve the road design processes. The advance design level recommends using actual laboratory test data of the dynamic and resilient modulus determined under simulated environmental and traffic loading conditions. To circumvent the need for conducting the mechanical test in lower design levels, predictive equations and correlations established with physical properties are used to estimate the mechanistic properties needed as input to the design software. This paper examines the simplifications incorporated in the model using results of dynamic and resilient modulus tests performed at the National Research Council Canada (NRC). For the covering abstract of this conference see ITRD number E211426.