EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Impact of Bridge Deck Cracking on Durability

Download or read book Impact of Bridge Deck Cracking on Durability written by Jeff Jonathon Pape and published by . This book was released on 1998 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Impact of Deck Cracking on Durability

Download or read book Impact of Deck Cracking on Durability written by Fouad Fanous and published by . This book was released on 2000 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete bridge decks subjected to corrosive environment because of the application of de-icing chemical could deteriorate at a rapid rate. In an effort to minimize corrosion of the reinforcement and the corresponding delaminations and spalls, the Iowa Department of Transportation started using epoxy-coated rebars (ECR) in the top mat of reinforcing around 1976 and in both mats 10 years later. The overall objective of this research was to determine the impact of deck cracking on durability and estimate the remaining functional service life of a bridge deck. This was accomplished by conducting a literature review, visually inspecting several bridge decks, collecting and sampling test cores from cracked and uncracked areas of bridge decks, determining the extent to which epoxy-coated rebars deteriorate at the site of cracks, and evaluating the impact of cracking on service life.

Book Phase 1 Report on the Development of Predictive Model for Bridge Deck Cracking and Strength Development

Download or read book Phase 1 Report on the Development of Predictive Model for Bridge Deck Cracking and Strength Development written by and published by . This book was released on 2009 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early-age cracking, typically caused by drying shrinkage (and often coupled with autogenous and thermal shrinkage), can have several detrimental effects on long-term behavior and durability. Cracking can also provide ingress of water that can drive chemical reactions, such as alkali-silica reaction (ASR) and sulfate attack. Because of the problems associated with cracking observed in bridge decks, and the impact of early-age cracking on long-term performance and durability, it is imperative that bridge decks be constructed with minimal early-age cracking and that exhibit satisfactory long-term performance and durability. To achieve these goals for bridges in the state of Texas, a research team has been assembled that possesses significant expertise and background in cement chemistry, concrete materials and durability, structural performance, computational mechanics (finite difference/element), bridge deck construction and maintenance, monitoring of in-site behavior of field structures, and the development of test methods and specifications aimed at practical implementation by state highway departments. This proposal describes a laboratory- and field-based research program aimed at developing a bridge deck cracking model that will ultimately be integrated into ConcreteWorks, a suite of software programs developed for TxDOT by this same research team.

Book Control and Repair of Bridge Deck Cracking

Download or read book Control and Repair of Bridge Deck Cracking written by Robert J. Frosch and published by . This book was released on 2010-11-15 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bridge Deck Cracking and Composite Action Analyses

Download or read book Bridge Deck Cracking and Composite Action Analyses written by Hani H. Nassif and published by . This book was released on 2010 with total page 2 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Durability of Concrete Bridge Decks

Download or read book Durability of Concrete Bridge Decks written by and published by . This book was released on 1965 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Curing on Bridge deck Concrete Shrinkage Cracking

Download or read book Effects of Curing on Bridge deck Concrete Shrinkage Cracking written by Ronald A. Lorini and published by . This book was released on 1995 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Factors Affecting the Durability of Concrete Bridge Decks

Download or read book Factors Affecting the Durability of Concrete Bridge Decks written by M. W. Horn and published by . This book was released on 1972 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cracking in Concrete Bridge Decks

Download or read book Cracking in Concrete Bridge Decks written by Tony R. Schmitt and published by . This book was released on 1995 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The causes of cracking in bridge decks are investigated and procedures are recommended to alleviate the problem. Forty continuous steel girder bridges, thirty-seven composite and three noncomposite bridges are evaluated. Field surveys conducted to document cracking patterns and to determine the crack density of each bridge are described. Information collected from construction documents, field books, and weather data logs is presented and compared to the observed levels of cracking to identify correlations between cracking and the variables studied. Thirty-one variables are considered such as material properties, site conditions, construction procedures, design specifications, age of bridge and traffic volume. Based on the research reported herein, cracking in monolithic bridge decks increases with increasing values of concrete slump, percent volume of water and cement, water content, and compressive strength, and decreasing values of air content (especially below 6.0%). Bridge deck overlays placed with zero slump concrete consistently exhibit high levels of cracking. Cracking in overlays also increases as placement lengths increase. High maximum air temperatures and large changes in air temperature on the day of casting aggravate cracking in monolithic bridge decks. High average air temperatures and large changes in air temperature similarly aggravate cracking in bridge deck overlays. Both monolithic and two layer bridges with fixed-ended girders exhibit increased cracking near the abutments compared to those with pin-ended girders.

Book Factors Affecting the Durability of Concrete Bridge Decks

Download or read book Factors Affecting the Durability of Concrete Bridge Decks written by M. W. Horn and published by . This book was released on 1975 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transverse Cracking of High Performance Concrete Bridge Decks After One Season Or Six to Eight Months

Download or read book Transverse Cracking of High Performance Concrete Bridge Decks After One Season Or Six to Eight Months written by and published by . This book was released on 2006 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cracking is a major problem with newly placed concrete decks. These decks tend to develop full depth, transverse cracks and partial depth longitudinal cracks within a few months of the concrete being placed. A literature review showed that several other states had experienced similar problems. A review of data from Ohio bridge decks showed weak correlations between deck cracking and slump, time of year when the deck was placed, shrinkage, chloride permeability and compressive strength, but there was no clear relationship between cracking and any of these properties. Data also suggested that using a coarse aggregate with an absorption> 1% may help mitigate deck cracking but will not always stop it. As part of this study, 3 bridge decks were instrumented. One was a standard class "S" concrete deck and the other two were high performance concrete. The class "S" deck showed only hairline cracking after 1 year, but transverse cracking occurred in the HPC decks. Instruments were placed in the decks to monitor strains. From the data, it appears that cracking is caused by several factors. High heat of hydration caused the plastic concrete to expand. When the concrete sets and cools, tensile stressed develop. Further tensile stresses develop through drying shrinkage. Restraining the deck against normal thermal movement contributes to additional tensile stress. Autogeneous shrinkage, where high heats of hydration cause water evaporation during hydration, and plastic shrinkage may cause more tensile stress. Recommendations for mitigating cracking include using lower cement contents, adding pozzolans and retarders, using slightly higher water/cement ratios, using larger aggregates, taking steps to limit shrinkage and eliminating restraints.

Book Performance of Epoxy coated Reinforcement in Iowa Bridge Decks

Download or read book Performance of Epoxy coated Reinforcement in Iowa Bridge Decks written by Han-Ching Wu and published by . This book was released on 1999 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete bridge decks subjected to corrosive environment, due to the application of de-icing chemical, could deteriorate at a rapid rate. In an effort to minimize corrosion of the reinforcement and the corresponding delaminations and spalls, the Iowa Department of Transportation (IADOT) started using epoxy-coated rebars (ECR) in the top mat of reinforcing around 1976 and in both mats about 10 years later. The ultimate objective of this research was to determine the impact of deck cracking on durability and estimate the remaining functional service life of a bridge deck. The overall objectives of this work were obtained by conducting a literature review, visually inspecting several bridge decks, collecting and sampling test cores from cracked and uncracked areas of bridge decks, determining the extent to which epoxy coated rebars deteriorate at the site of cracks, and evaluating the impact of cracking on service life.

Book Rethinking Bridge Deck Longevity and Maintenance with Portland Cement Polymer Concrete

Download or read book Rethinking Bridge Deck Longevity and Maintenance with Portland Cement Polymer Concrete written by Andrew P. Agosto and published by . This book was released on 2008 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge deck deterioration in the northern Midwest creates significant costs to state Departments of Transportation (DOT's) in the region. The fundamental cause of the problem is low tensile strength and water permeable reinforced concrete resulting in deck cracking and ultimately reinforcing bar corrosion. Portland Cement Polymer Concrete (PCPC) combined with a design approach tailored to its advantages could virtually eliminate early deck deterioration and the associated costs providing an alternative asset management path for bridge decks. Bridge decks would no longer have to be removed from their substructure every fifteen years and replaced. The results would be higher quality, longer lasting bridge decks with lower life cycle costs. This project will demonstrate the feasibility and methodology of such a strategy. This project will develop a strategy that combines innovative concrete materials, novel design and cost analysis that enhances the longevity and reduces the life cycle cost of highway bridge decks. The project is expected to show significant life-cycle cost advantages to using a high performance bridge deck material.

Book Field Investigation And Statistical Modeling Of In service Performance Of Concrete Bridge Decks In Pennsylvania

Download or read book Field Investigation And Statistical Modeling Of In service Performance Of Concrete Bridge Decks In Pennsylvania written by Amir Manafpour and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The condition of the nation's aging infrastructure has been of the highest concern in recent decades. FHWA estimates that $20.5 billion will need to be invested annually in order to eliminate the United States' bridge deficient backlog by 2028. Bridge deck deterioration is one of the primary concerns and cost factors for transportation agencies. Pennsylvania has one of the highest percentages of structurally deficient and functionally obsolete bridges in the USA. This thesis is structured in two papers/studies related to the performance of concrete bridge decks in Pennsylvania.The first paper summarizes the results of expert survey and field investigations of early-age bridge deck cracking in the Commonwealth of Pennsylvania. The goal was to use field data to identify factors that contribute to or reduce early-age cracking in concrete bridge decks and to assess the effect of cracks on long-term durability performance of bridge decks. First, a survey of 71 PennDOT personnel was conducted to collect and document their experience with early-age cracking and its relation to long-term deck performance. Next, inspection data from 203 bridge decks were collected and analyzed to evaluate the effect of concrete mixture proportions and properties, construction methods, and rebar type on the propensity to experience early-age deck cracking. The results suggest that limiting the total cementitious materials content (e.g., to 620 pcy) and the maximum compressive strength (e.g., to 5000 psi at 28 days) is advisable to reduce deck cracking. In addition, epoxy-coated rebar showed good corrosion resistance even in cracked concrete.The second paper focuses on evaluating the deterioration behavior of concrete bridge decks over time. Considering the stochastic nature of infrastructure deterioration, studies have found that time-based probabilistic models are the most accurate for performance prediction. In this paper, a semi-Markov time-based model based on Accelerated Failure Time (AFT) Weibull fitted-parameters is developed. For this purpose, approximately 30 years of in-service performance data for over 22,000 bridges in Pennsylvania were utilized. The proposed approach attempts to relate deck deterioration rates to various explanatory variables such as structural specifications and environmental factors. Furthermore, the effect of remediation on bridge deck deterioration and service life are also evaluated and quantified based on in-service performance data.

Book Cause and Control of Transverse Cracking in Concrete Bridge Decks

Download or read book Cause and Control of Transverse Cracking in Concrete Bridge Decks written by M. Ala Saadeghvaziri and published by . This book was released on 2002 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many concrete bridge decks develop transverse cracking and most of these cracks develop at early ages, some right after construction and some after the bridge has been opened to traffic for a period of time. Structural design factors have not been the subject of much research in the past and they were the main thrust of this research study. Using 2-D and 3-D linear and nonlinear finite element models many design factors such as girder stiffness, deck thickness, girder spacing, relative stiffness of deck to girder, amount of reinforcements, etc., were studied. The research study also included a comprehensive review of the existing literature as well as survey of 24 bridges in the state of New Jersey. Results of each research task are presented and discussed in detail. Furthermore, based on analytical results and literature review, the effect of various factors are quantified and specific recommendations for possible consideration in design are made.

Book Durability of Bridge Deck Concrete

Download or read book Durability of Bridge Deck Concrete written by Thomas D. Larson and published by . This book was released on 1971 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: