EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Immune system modeling and analysis

Download or read book Immune system modeling and analysis written by Ramit Mehr and published by Frontiers Media SA. This book was released on 2015-04-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid development of new methods for immunological data collection – from multicolor flow cytometry, through single-cell imaging, to deep sequencing – presents us now, for the first time, with the ability to analyze and compare large amounts of immunological data in health, aging and disease. The exponential growth of these datasets, however, challenges the theoretical immunology community to develop methods for data organization and analysis. Furthermore, the need to test hypotheses regarding immune function, and generate predictions regarding the outcomes of medical interventions, necessitates the development of mathematical and computational models covering processes on multiple scales, from the genetic and molecular to the cellular and system scales. The last few decades have seen the development of methods for presentation and analysis of clonal repertoires (those of T and B lymphocytes) and phenotypic (surface-marker based) repertoires of all lymphocyte types, and for modeling the intricate network of molecular and cellular interactions within the immune systems. This e-Book, which has first appeared as a ‘Frontiers in Immunology’ research topic, provides a comprehensive, online, open access snapshot of the current state of the art on immune system modeling and analysis.

Book A Survey of Models for Tumor Immune System Dynamics

Download or read book A Survey of Models for Tumor Immune System Dynamics written by John A. Adam and published by Springer Science & Business Media. This book was released on 2012-10-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

Book Mathematical Modeling of the Immune System in Homeostasis  Infection and Disease

Download or read book Mathematical Modeling of the Immune System in Homeostasis Infection and Disease written by Gennady Bocharov and published by Frontiers Media SA. This book was released on 2020-02-24 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).

Book Mathematical Modelling of Immune Response in Infectious Diseases

Download or read book Mathematical Modelling of Immune Response in Infectious Diseases written by Guri I. Marchuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.

Book Systems Immunology

    Book Details:
  • Author : Jayajit Das
  • Publisher : CRC Press
  • Release : 2018-09-03
  • ISBN : 1498717411
  • Pages : 355 pages

Download or read book Systems Immunology written by Jayajit Das and published by CRC Press. This book was released on 2018-09-03 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Taken together, the body of information contained in this book provides readers with a bird’s-eye view of different aspects of exciting work at the convergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the editors for putting this volume together." –Arup K. Chakraborty, Robert T. Haslam Professor of Chemical Engineering, and Professor of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.

Book Molecular Biology of the Cell

Download or read book Molecular Biology of the Cell written by and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Compartmental Analysis of the Immune System

Download or read book Compartmental Analysis of the Immune System written by Karen Lawrence and published by . This book was released on 1977 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compartmental model of the immune system is simulated. Chapter I discusses the importance of such a model, reviews past immune system models, and summaries the immunological theory the model is based upon. In Chapter II, the compartmental representation of the immune system is developed from immunological and physiological theory. A simplified system of three compartments, the blood, the spleen, and the lymph and lymph nodes is derived. The mathematical model is derived in Chapter III based upon the simplified compartmental system, and immune system kinetics. The simulation results are compared to literature data in Chapter IV, and it is concluded that modeling and simulation of the immune system may result in significant advances in immunological theory.

Book Immune System Modelling and Simulation

Download or read book Immune System Modelling and Simulation written by Filippo Castiglione and published by CRC Press. This book was released on 2015-04-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes a computational model of the immune system reaction, C-ImmSim, built along the lines of the computer model known as the Celada-Seiden model (CS-model). The computational counterpart of the CS-model is called IMMSIM which stands for IMMune system SIMulator. IMMSIM was written in 1992 by the physicist Phil E. Seiden and the immunol

Book The Science and Applications of Synthetic and Systems Biology

Download or read book The Science and Applications of Synthetic and Systems Biology written by Institute of Medicine and published by National Academies Press. This book was released on 2011-12-30 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.

Book Computational Immunology

    Book Details:
  • Author : Josep Bassaganya-Riera
  • Publisher : Academic Press
  • Release : 2015-10-21
  • ISBN : 0128037156
  • Pages : 212 pages

Download or read book Computational Immunology written by Josep Bassaganya-Riera and published by Academic Press. This book was released on 2015-10-21 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Immunology: Models and Tools encompasses the methodological framework and application of cutting-edge tools and techniques to study immunological processes at a systems level, along with the concept of multi-scale modeling. The book's emphasis is on selected cases studies and application of the most updated technologies in computational modeling, discussing topics such as computational modeling and its usage in immunological research, bioinformatics infrastructure, ODE based modeling, agent based modeling, and high performance computing, data analytics, and multiscale modeling. There are also modeling exercises using recent tools and models which lead the readers to a thorough comprehension and applicability. The book is a valuable resource for immunologists, computational biologists, bioinformaticians, biotechnologists, and computer scientists, as well as all those who wish to broaden their knowledge in systems modeling. - Offers case studies with different levels of complexity - Provides a detailed view on cutting-edge tools for modeling that are useful to experimentalists with limited computational skills - Explores the usage of simulation for hypothesis generation, helping the reader to understand the most valuable points on experimental setting

Book Janeway s Immunobiology

    Book Details:
  • Author : Kenneth Murphy
  • Publisher : Garland Science
  • Release : 2010-06-22
  • ISBN : 9780815344575
  • Pages : pages

Download or read book Janeway s Immunobiology written by Kenneth Murphy and published by Garland Science. This book was released on 2010-06-22 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.

Book A Survey of Models for Tumor immune System Dynamics

Download or read book A Survey of Models for Tumor immune System Dynamics written by John A. Adam and published by Birkhauser. This book was released on 1997-01-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book is a collection of seven interdisciplinary surveys on modeling tumor dynamics and interactions between tumors and immune system. The goal is to provide an accessible, comprehensive report on the field and to help define a framework for future interdisciplinary research activity. Modeling and simulation of general behaviors of immune systems are also discussed. Each survey carefully covers a specialized field and provides a detailed description of the present state-of-the-art in research. The reader will be able to obtain essential information on the methodological approach used and on the models that are categorized and used. The book is an excellent resource and survey for applied mathematicians, mathematical biologists and biologists interested in modeling methods in immunology and related sciences.

Book Artificial Immune Systems and Their Applications

Download or read book Artificial Immune Systems and Their Applications written by Dipankar Dasgupta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a pioneering work on the emerging field of artificial immune systems-highly distributed systems based on the principles of the natural system. Like artificial neural networks, artificial immune systems can learn new information and recall previously learned information. This book provides an overview of artificial immune systems, explaining its applications in areas such as immunological memory, anomaly detection algorithms, and modeling the effects of prior infection on vaccine efficacy.

Book Theoretical and Experimental Insights into Immunology

Download or read book Theoretical and Experimental Insights into Immunology written by Alan S. Perelson and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Immunology is largely a science of observation and experimentation, and these approaches have lead to great increases in our knowledge of the genes, molecules and cells of the immune system. This book is an up-to-date discussion of the current state of modelling and theoretical work in immunology, of the impact of theory on experiment, and of future directions for theoretical research. Among the topics discussed are the function and evolution of the immune system, computer modelling of the humoral immune response and of idiotypic networks and idiotypic mimicry, T-cell memory, cryptic peptides, new views and models of AIDS and autoimmunity, and the shaping of the immune repertoire by early presented antigens and self immunoglobulin.

Book Mathematical Modeling of the Immune Response

Download or read book Mathematical Modeling of the Immune Response written by Daniela Prikrylova and published by CRC Press. This book was released on 1992-07-27 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling of the Immune Response presents a comprehensive examination of the history of development of mathematical models in immunology and discusses how these models are used by biologists. The book features the results of work done by the authors using a model showing the potential of interleukin 2 as an agent responsible for the proper control of the range of the immune response. Additional work by the authors regarding modeling autoimmunity and its treatment are discussed as well.

Book Mathematical Modeling of Complex Biological Systems

Download or read book Mathematical Modeling of Complex Biological Systems written by Abdelghani Bellouquid and published by Springer Science & Business Media. This book was released on 2007-10-10 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Proposed models are related to the generalized Boltzmann equation. The book may be used for advanced graduate courses and seminars in biological systems modeling.

Book Comparative Analysis of Mathematical Models of the Immune Response

Download or read book Comparative Analysis of Mathematical Models of the Immune Response written by Margaret Katherine Winkler and published by . This book was released on 1986 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: