EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Identification and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Content of Soybean

Download or read book Identification and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Content of Soybean written by Jiao Wang and published by . This book was released on 2013 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein and oil are the major chemical constituents of soybean seed that affect the quality of soyfood, feed, and oil products. Therefore, soybean cultivars with high protein and/or high oil are desirable for the soyfood and feed markets. Use of molecular-marker-assisted selection will facilitate the breeding process of such cultivar development. The objectives of this research were to identify new quantitative trait loci (QTL) and confirm previously reported QTL associated with seed protein and oil content by using simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers. Two recombinant inbred line (RIL) populations consisting of 242 individuals from R05-1415 (high protein/low oil) x R05-638 (low protein/high oil) (population 1) and 214 individuals from R05-4256 (high oil/low protein) x V97-1346 (low oil/high protein) (population 2) were used in QTL mapping. F2 plants from the mapping populations were used for SSR/SNP genotyping. In the marker screening, 120 out of 626 SSR and 1652 out of 5361 SNP markers were polymorphic. The RILs from both populations were grown in a randomized complete block design in Argentina in 2010, Stuttgart and Keiser, AR in 2011 and 2012. Seed from F2:3, F2:4 and F2:5 lines were tested for protein and oil content by using near infrared transmittance technique based on 13% moisture. Protein and oil content in both RIL populations exhibited a typical normal distribution. Single marker analysis (SMA) and composite interval mapping (CIM) revealed two novel oil QTL on chromosomes 14 and 6 in population 2 which account for 17% and 13% of the oil content variation, respectively. A minor protein QTL was confirmed on chromosome 14. One major QTL with large effect was confirmed on chromosome 20 across genetic populations, locations, and years; this QTL has opposite effects on seed protein and oil content. Eight new SNP markers flanking this QTL region on chromosome 20 were identified in population 2. These new and confirmed QTL along with linked molecular markers for seed protein and oil content can be used for marker-assisted selection for seed composition improvement in soybean breeding programs.

Book Identification and Localization of Quantitative Trait Loci  QTL  and Genes Associated with Oil Concentration in Soybean  Glycine Max  L   Merrill  Seed

Download or read book Identification and Localization of Quantitative Trait Loci QTL and Genes Associated with Oil Concentration in Soybean Glycine Max L Merrill Seed written by Mehrzad Eskandari and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genomic Regions Involved in Seed Protein  Oil  and Carbohydrate Concentration in Soybean

Download or read book Genomic Regions Involved in Seed Protein Oil and Carbohydrate Concentration in Soybean written by Samantha J. McConaughy and published by . This book was released on 2017 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybeans [Glycine max (L.) Merr.] are processed for their high-quality vegetable oil and protein meal for feed, food, and industrial applications but, because of the high negative correlations between seed protein and oil concentration, it has been difficult to develop soybean lines with concomitant increases in both protein and oil. Previous studies considered only seed protein or oil concentration. This study is unique in that populations were developed using parental lines that differed in their protein, oil, and total carbohydrate concentrations in the mature seed. Two soybean populations were developed using soybean accession PI 547827 with lower total sugars as a common parent, crossed to two different soybean lines with modified protein and oil concentrations. The objectives were to identify quantitative trait loci (QTL) related to seed protein, oil, and carbohydrate concentration as well as for individual sugars sucrose, raffinose, and stachyose. For each of the two crosses, F4-derived recombinant inbred lines (RIL) were developed through single seed descent resulting in 526 and 404 RILs, respectively. Genotypes were determined for F4 plants by genotyping-by-sequence (GbS), resulting in 1,650 to 2,850 polymorphic SNPs used for QTL analyses. Populations were grown in an augmented design in two Nebraska and one Puerto Rico environment to evaluate seed composition, yield, and maturity. The QTL analyses identified 23 novel QTL across all seed composition traits, protein, oil, sum(p+o) or carbohydrate concentration, and each of the sugars on 17 different linkage groups. Ninety nine percent of the lines in the high protein cross, and 100% of the lines in the high oil cross exceeded processor targets of 11 pounds of oil per bushel and a soybean meal with greater than 47.5% protein. Correlations between yield and the sum(p+o) were either zero or slightly positive, indicating that it should be possible to identify high-yielding lines with increased seed protein and oil concentration. Populations like these, and the QTL identified here, will be useful in achieving those objectives to provide more value for both the processor and producer.

Book Detection and Validation of Agronomic and Seed Quality Quantitative Trait Loci in Soybean

Download or read book Detection and Validation of Agronomic and Seed Quality Quantitative Trait Loci in Soybean written by Catherine Nyaguthii Nyinyi and published by . This book was released on 2008 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean seed quality and agronomic traits are important commercially. Agronomic traits such as yield, plant height, lodging, and adapted maturity have been the primary focus of breeders for many years. Seed quality traits are also important as they affect the market price of soybean. Higher protein soybean historically is valued more per unit. It is the goal of plant breeders therefore to simultaneously improve seed quality and agronomic traits. Seed quality and agronomic traits are quantitative traits whose inheritance is governed by many genes, and whose expression is subject to environmental variation. Furthermore, negative correlations between yield and protein, and protein and oil make it even more difficult to select for these traits. Molecular breeding tools such as quantitative trait loci (QTL) can provide breeders with a more direct method of selection for traits at the molecular level. QTL can however be misleading as they are subject to type I and type II errors. QTL validation studies are essential to marker assisted programs as they negate the need for individual breeders to validate every QTL of interest. The purpose of this study was to validate previously reported seed quality and agronomic trait QTL in an independent population derived from an Essex x Williams 82 cross. We were able to validate QTL for all traits and detected novel QTL that may be useful to breeders.

Book Soybean Seed Composition

    Book Details:
  • Author : Moulay Abdelmajid Kassem
  • Publisher : Springer Nature
  • Release : 2022-01-10
  • ISBN : 3030829065
  • Pages : 638 pages

Download or read book Soybean Seed Composition written by Moulay Abdelmajid Kassem and published by Springer Nature. This book was released on 2022-01-10 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean Seed Composition covers three decades of advances in quantitative trait loci (QTL) mapping of seed protein, oil, fatty acids, amino acids, sugars, mineral nutrients, isoflavones, lunasin, and other beneficial compounds. It opens with coverage of seed protein, oil, fatty acids, and amino acids and the effects that genetic and environmental factors have on them. Detailed discussion of QTL that control seed protein, oil, and fatty acids follows, and the book also covers seed amino acids, macronutrients, micronutrients, sugars, and other compounds that are key to selection for crop improvement. The book also provides an overview of two decades of QTL mapping of mineral deficiencies in soybean, which sheds light on the importance of a balanced mineral nutrition in soybean and other crops, elucidates salt stress tolerance QTL mapping, which is another challenge that faces soybean and other crop production worldwide. The importance of soybean seed isoflavones from their biosynthesis and quantification methods to locations and variations in seeds, roots, and leaves, to their QTL mapping is discussed, as well as providing key information on lunasin, a bioactive anticancer peptide in soybean seeds that will help farmers and breeders to develop soybean cultivars with improved seed isoflavones and lunasin content. The book will be of interest to graduate students, academics, and researchers in the fields of genetic and QTL mapping of important agronomic traits in soybean and other crops.

Book Genetic Analysis of Food grade Soybeans and Identification of Quantitative Trait Loci  QTL  for Seed Hardness and Calcium Content in Soybean

Download or read book Genetic Analysis of Food grade Soybeans and Identification of Quantitative Trait Loci QTL for Seed Hardness and Calcium Content in Soybean written by Bo Zhang and published by . This book was released on 2006 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Trait Loci Associated with Protein  Oil and Carbohydrates in Soybean  Glycine Max  L   Merr   Seeds

Download or read book Quantitative Trait Loci Associated with Protein Oil and Carbohydrates in Soybean Glycine Max L Merr Seeds written by Ravi V. Mural and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean is mainly cultivated for its oil and high quality protein meal for feed, fuel and food uses. Achieving an improved balance of protein and oil in the seed, along with yield will enhance crop value. In practice, this has been difficult to achieve due to significant negative correlations of oil and protein, and the mostly negative relationship reported between seed protein concentration and yield. Most previous studies have focused on increasing seed oil concentration (SOC) or seed protein concentration (SPC) individually, and a few focused on decreasing raffinosacharides to improve digestibility and metabolizable energy of the feed for monogastric animals. None of the studies to date have considered improving the balance of SOC and SPC by also considering variation in total soluble sugars, which comprise the third largest component in soybean seed. Three related bi-parental recombinant inbred line (RIL) populations were developed by crossing two plant introduction lines that have lower total sugar concentration with two high-yielding soybean lines having higher SOC resulting in two pairs of half-sib populations. The objectives of this study were to identify genomic regions that influence oil, protein and carbohydrate concentrations in the seed in three uniquely structured bi-parental RIL populations using Molecular Inversion Probes (MIPs) markers, and evaluate relationships among seed composition traits and seed yield, seed weight and plant maturity from multiple environments. In total, 51 QTLs for seed, seed composition and plant traits were mapped on 17 chromosomes. All populations showed transgressive segregation for the sum of seed oil+protein concentration (SUM) in both directions but showed little transgressive segregation for SOC or SPC in two populations. There was a positive correlation of SOC and SPC with the SUM in two populations and a near to zero relationship of SUM with plot yield. Over the three populations, about 85% of the lines met processor targets of 10-12 pounds of oil per bushel and would produce 48% protein meal. The selected lines from this study could be further evaluated for yield and desirable agronomic traits in multi-location trials, which could lead to higher yielding soybean lines with improved seed composition. This work will ultimately lead to higher profitability for both the processors and farmers.

Book Identification of Quantitative Trait Loci

Download or read book Identification of Quantitative Trait Loci written by Sandra Liliana Florez Palacios and published by . This book was released on 2014 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seed carbohydrate content is an important aspect in breeding for food-grade soybeans commercialized in the soyfood market. Sucrose and stachyose are the primary carbohydrates in soybean seed. Sucrose affects the quality and taste of various soyfoods such as tofu, soymilk, and natto; however, consumption of soy-based products with high stachyose concentrations can cause diarrhea and flatulence. A mutant line (V99-5089) with high-sucrose and low-stachyose has been identified. The objectives of this research were: 1) to identify sucrose QTLs in a F2-derived mapping population; 2) to investigate the genetic relationship between two low-stachyose sources, V99-5089 and the germplasm line PI200508; and 3) to identify stachyose QTLs in a F2-derived mapping population. An allelism test for low stachyose was performed by using 121 F2-derived lines from the cross PI200508 x V99-5089 grown in three different environments. Carbohydrate content was determined by a high performance liquid chromatogram system, and lines were classified as high- or low- stachyose. Chi-square analysis was performed to test for goodness-of-fit of observed segregation to the expected genetic ratio. Results showed a 9 high-stachyose : 7 low-stachyose ratio, indicating that two independent recessive genes conferred the low-stachyose trait in the two mutant lines. Additionally, gene dosage effect was observed; however, further study is required in order to confirm its presence. The sucrose and stachyose QTL studies were carried out in 92 F2:7 lines derived from the cross V97-3000 x V99-5089. Leaf samples were collected at F2:6 for DNA extraction and subsequent molecular analysis using single nucleotide polymorphism (SNP) markers. Seed from F2:7 lines grown in two locations, each one with two replications, were analyzed for sugar content. Results showed two sucrose QTLs located on chromosomes 6 and 10, accounting for 17 and 11% of the phenotypic variation, respectively. Additionally, two stachyose QTLs were found on chromosome 10 and 11, explaining 11 and 46% of the stachyose variation. Results from this research indicate that the two low-stachyose sources may serve as valuable parents in breeding for low-stachyose soybeans. Additionally, V99-5089 may also provide favorable alleles for breeding high-sucrose varieties. The sucrose and stachyose QTLs identified in these studies are stable across environments and will facilitate the marker-assisted selection for both traits.

Book Association Mapping for Soybean  glycine Max L  Merr   Protein and Oil Content

Download or read book Association Mapping for Soybean glycine Max L Merr Protein and Oil Content written by Joseph Najjar and published by . This book was released on 2020 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean [Glycine Max (L.) Merrill] is an important economic crop because of its high content of seed protein and oil. Seed oil and protein content are quantitative inherited traits. The genetics of seed protein and oil levels have been extensively studied, with 367 QTL reported for protein and 475 QTL reported for oil to date. Validation of such QTLs, and identification of easily-automatable molecular markers around these QTL will aid the progression of breeding for such traits. The focus of this research was to discover novel and verify previously reported QTL related to protein and/or oil content via Genome-Wide Association Study (GWAS). A total of 391 Plant Introduction (PI) lines from the Germplasm Resource Information Network (GRIN) database were used, representing contrasting seed protein and oil content. A single-row plot with one replication was grown in 3-meter rows in Fayetteville, AR in 2015, and with two replications in Fayetteville, AR, Stuttgart, AR, and Raleigh, NC in 2016 in a randomized-complete block design. Seed samples were assessed for protein and oil concentration using the Perten DA 7250™ NIR analyzer. To perform the GWAS and detect QTL controlling both protein and oil content in soybean, the resulting seed content phenotypic data was utilized in conjunction with publicly available SoySNP50k iSelect BeadChip database from the USDA-ARS Soybean Germplasm Collection. We detected significant markers previously reported for seed protein content on chromosome 5, 7, 9, 18, and 20, and on chromosomes 7, 8, 13, 15, 19, and 20 for seed oil content. In addition, we reported new QTL for seed protein on chromosomes 8, 10, 15, 16, and 20, and for oil on chromosomes 5, 7, 8, and 18. Future QTL mapping via use of bi-parental populations will be necessary to confirm QTL and validate the genes identified as novel in this study.

Book The Identification of Quantitative Trait Loci for Sucrose and Stachyose Content in Soybean Seed

Download or read book The Identification of Quantitative Trait Loci for Sucrose and Stachyose Content in Soybean Seed written by Ailan Zeng and published by . This book was released on 2012 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sucrose is a desirable sugar in soybean seed that affects the quality and taste of soyfoods, while stachyose is a non-digestible sugar that induces flatulence in non-ruminant animals. Therefore, soybean cultivars with high sucrose and/or low stachyose would be valuable for soyfood and meal markets. The objectives of this study were to identify quantitative trait loci (QTL) or genes associated with seed sucrose and stachyose content using simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. A low sucrose line, MFS-553, was crossed with a high sucrose plant introduction, PI 243545, to develop the sucrose QTL mapping population. A total of 626 random SSR plus 5361 SNP markers covering 20 soybean chromosomes were used to screen the parents MFS-553 and PI 243545, 209 SSR and 2016 SNP markers were polymorphic, of which, 97 SSR markers were used to screen the F2:3 population and 2016 SNP markers were used to screen the F3:4 population derived from MFS-553 x PI 243545. A normal stachyose cultivar, Osage, was crossed with a low stachyose line, V99-5089, to develop F3 mapping population for genetic study of stachyose content. A total of 34 SSR and 56 SNP markers on chromosome 10 and 11 were used to screen the parents Osage and V99-5089, 10 SSR and 18 SNP markers were polymorphic. Of these, 5 SSR and 16 SNP markers were used to screen the F3:4 lines derived from Osage x V99-5089. For phenotyping the sugar profile, seed of F2:3, F3:5 and F3:6 lines from MFS-553 x PI 243545 and seed of F3:5 and F3:6 lines from Osage x V99-5089 were analyzed for sucrose and stachyose using high performance liquid chromatography (HPLC). The sucrose content in MFS-553 x PI 243545 cross fitted to a normal distribution whereas stachyose content in Osage x V99-5089 appeared to fit to a bimodal distribution. Composite interval mapping (CIM) and multiple interval mapping (MIM) were performed to map the QTLs in the MFS-553 x PI 243545 population. Three QTLs for seed sucrose were mapped to chromosome 5, 9, and 16, explaining 46%, 10% and 8% of phenotypic variation for sucrose content, respectively. For the stachyose mapping, data revealed a major and a minor QTL on chromosome 11 and 10 explaining 81% and 11% of phenotypic variation for stachyose content, respectively. Chi-square tests further indicated that these two QTL represent two independent genes for stachyose content. Molecular markers and QTL/genes for sucrose or stachyose content identified from this study can be used for marker assisted selection in breeding soybean lines with desired sugar profile.

Book Confirming QTL for Seed Yield from Exotic Soybean Germplasm

Download or read book Confirming QTL for Seed Yield from Exotic Soybean Germplasm written by Charles C. Hendrix and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The genetic improvement of soybean (Glycine max (L.)) cultivars in North America (N.A.) has, for the most part, been accomplished by intermating elite cultivars. This breeding strategy, combined with the limited N.A. genetic base, has resulted in a very narrow gene pool. Plant introductions (PI) have been used to expand the N.A. genetic base with limited success when conventional breeding methods have been used. Quantitative trait loci (QTL) mapping has been used to identify genetic regions within PIs that could contribute both genetic diversity and improved seed yield potential in the N.A. gene pool. Of the putative QTL for seed yield that have been identified, only a small percentage have been tested in confirmation trials and even fewer have been confirmed. The objective of this study is to confirm putative QTL for seed yield derived from Exotic germplasm that were identified in previous QTL mapping studies. One BC1F9 confirmation population was developed from the cross Kenwood x LG94-1713 to test the QTL associated with SSR loci Satt405 (linkage group (LG), J chromosome (chr) 16) and two BC1F11 populations were developed to test Satt477 (LG O, chr 10) and Satt557 (LG C2, chr 6). Four F8 confirmation populations were developed from the cross of BSR 101 x LG82-8379 to test the QTL linked to Satt142 (LG H, chr 12), Satt225 (LG A1, chr 5), Satt363 (LG C2, chr 6), and Satt544 (LG K, chr 9) and two F9 populations were developed to test Satt168 (LG B2, chr 14) and Satt358 (LG O, chr 10). Unfortunately, no putative QTL for seed yield were confirmed in any of the populations developed from the BSR 101 x LG82-8379 mapping population. A QTL for plant height, maturity, and seed yield associated with Satt557 was confirmed in two populations developed from Kenwood x LG94-1713 with the beneficial allele coming from the LG94-1713 parent but these results were confounded by the tight linkage of Satt557 to the E1 locus. In both populations maturity was delayed by slightly more than 5 days in the lines homozygous for the LG94-1713 allele. However, there were differences between the two populations for both plant height and seed yield. The allele from LG94-1713 in one population increased plant height by 4.6 cm and seed yield by 0.32 Mg ha-1 more than in the second population. We hypothesize that a crossover occurred in one of the populations that separated the putative QTL from Satt557 but not from E1 and this QTL is responsible for the increase in seed yield and plant height. Several polymorphic single nucleotide polymorphism (SNP) markers have been identified between the two parents, which are on either side of Satt557. The lines in both populations are being tested with these markers to determine if and where the crossover occurred. If our assumption is correct, this confirmed QTL for seed yield may add additional genetic diversity and higher seed yield potential to the N.A. gene pool.

Book The Soybean Genome

    Book Details:
  • Author : Henry T. Nguyen
  • Publisher : Springer
  • Release : 2017-09-20
  • ISBN : 3319641980
  • Pages : 216 pages

Download or read book The Soybean Genome written by Henry T. Nguyen and published by Springer. This book was released on 2017-09-20 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.

Book Validation of Quantitative Trait Loci Conditioning Seed Phytate and Protein Concentration in Soybean  Glycine Max  L   Merrill

Download or read book Validation of Quantitative Trait Loci Conditioning Seed Phytate and Protein Concentration in Soybean Glycine Max L Merrill written by Andrew M. Scaboo and published by . This book was released on 2005 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soybean Breeding

    Book Details:
  • Author : Felipe Lopes da Silva
  • Publisher : Springer
  • Release : 2017-06-10
  • ISBN : 3319574337
  • Pages : 439 pages

Download or read book Soybean Breeding written by Felipe Lopes da Silva and published by Springer. This book was released on 2017-06-10 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written by soybean experts to cluster in a single publication the most relevant and modern topics in soybean breeding. It is geared mainly to students and soybean breeders around the world. It is unique since it presents the challenges and opportunities faced by soybean breeders outside the temperate world.

Book Identification of Quantitative Trait Loci Governing Water use efficiency in Soybean

Download or read book Identification of Quantitative Trait Loci Governing Water use efficiency in Soybean written by Mark Macrander and published by . This book was released on 1996 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soybean molecular breeding and genetics

Download or read book Soybean molecular breeding and genetics written by Guo-Liang Jiang and published by Frontiers Media SA. This book was released on 2023-03-29 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genetic Mapping of Quantitative Trait Loci Conditioning Protein Concentration and Quality  and Other Seed Characteristics in Soybean  Glycine Max  L   Merrill

Download or read book Genetic Mapping of Quantitative Trait Loci Conditioning Protein Concentration and Quality and Other Seed Characteristics in Soybean Glycine Max L Merrill written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean [Glycine max (L.) Merr.] is grown for its high oil and protein concentration, which may be used in a wide array of industries throughout the world. It contributes about 15 billion dollars annually to the US economy. Focusing on protein concentration and quality, I was interested to discover genomic regions as quantitative trait loci (QTL) associated with nitrogen accumulation during reproductive stages, protein concentration, storage protein fractions, amino acid composition, seed size, oil content, and agronomic traits. A population of 101 F6-derived recombinant inbred lines (RIL) created from a cross of N87-984-16 x TN93-99 were used to achieve these objectives. Experiments were conducted in six environments during 2002 and 2003. A significant (P