Download or read book Hypothesis Testing of High Dimensional Data with Applications to Medical Image Analysis written by Kun Nie and published by . This book was released on 2004 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Download or read book Medical Image Computing and Computer Assisted Intervention MICCAI 2008 written by Dimitris N. Metaxas and published by Springer Science & Business Media. This book was released on 2008 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The two-volume set LNCS 5241 and LNCS 5242 constitute the refereed proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008, held in New York, NY, USA, in September 2008.The program committee carefully selected 258 revised papers from numerous submissions for presentation in two volumes, based on rigorous peer reviews. The first volume includes 127 papers related to medical image computing, segmentation, shape and statistics analysis, modeling, motion tracking and compensation, as well as registration. The second volume contains 131 contributions related to robotics and interventions, statistical analysis, segmentation, intervention, modeling, and registration.
Download or read book Applications of Synthetic High Dimensional Data written by Sobczak-Michalowska, Marzena and published by IGI Global. This book was released on 2024-03-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning and Medical Imaging written by Guorong Wu and published by Academic Press. This book was released on 2016-08-11 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques
Download or read book Shape Analysis in Medical Image Analysis written by Shuo Li and published by Springer Science & Business Media. This book was released on 2014-01-28 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as for example, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computational vision, computer sciences, human motion, mathematics, medical imaging, medicine, pattern recognition and physics.
Download or read book Artificial Intelligence in Medical Imaging written by Lia Morra and published by CRC Press. This book was released on 2019-11-25 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Download or read book Introduction to the Science of Medical Imaging written by R. Nick Bryan and published by Cambridge University Press. This book was released on 2009-11-19 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revolutionary advances in imaging technology that provide high resolution, 3-D, non-invasive imaging of biological subjects have made biomedical imaging an essential tool in clinical medicine and biomedical research. Key technological advances include MRI, positron emission tomography (PET) and multidetector X-ray CT scanners. Common to all contemporary imaging modalities is the creation of digital data and pictures. The evolution from analog to digital image data is driving the rapidly expanding field of digital image analysis. Scientists from numerous disciplines now require in-depth knowledge of these complex imaging modalities. Introduction to the Science of Medical Imaging presents scientific imaging principles, introduces the major biomedical imaging modalities, reviews the basics of human and computer image analysis and provides examples of major clinical and research applications. Written by one of the world's most innovative and highly respected neuroradiologists, Introduction to the Science of Medical Imaging is a landmark text on image acquisition and interpretation.
Download or read book Information Processing in Medical Imaging written by Marc Niethammer and published by Springer. This book was released on 2017-06-06 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 25th International Conference on Information Processing in Medical Imaging, IPMI 2017, held at the Appalachian State University, Boon, NC, USA, in June 2017. The 53 full papers presented in this volume were carefully reviewed and selected from 147 submissions. They were organized in topical sections named: analysis on manifolds; shape analysis; disease diagnosis/progression; brain networks an connectivity; diffusion imaging; quantitative imaging; imaging genomics; image registration; segmentation; general image analysis.
Download or read book Intelligent Data Analysis for Biomedical Applications written by D. Jude Hemanth and published by Academic Press. This book was released on 2019-03-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems
Download or read book Introduction to High Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Download or read book Medical Image Computing and Computer Assisted Intervention MICCAI 2019 written by Dinggang Shen and published by Springer Nature. This book was released on 2019-10-10 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.
Download or read book Statistical Shape and Deformation Analysis written by Guoyan Zheng and published by Academic Press. This book was released on 2017-03-23 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Shape and Deformation Analysis: Methods, Implementation and Applications contributes enormously to solving different problems in patient care and physical anthropology, ranging from improved automatic registration and segmentation in medical image computing to the study of genetics, evolution and comparative form in physical anthropology and biology. This book gives a clear description of the concepts, methods, algorithms and techniques developed over the last three decades that is followed by examples of their implementation using open source software. Applications of statistical shape and deformation analysis are given for a wide variety of fields, including biometry, anthropology, medical image analysis and clinical practice. - Presents an accessible introduction to the basic concepts, methods, algorithms and techniques in statistical shape and deformation analysis - Includes implementation examples using open source software - Covers real-life applications of statistical shape and deformation analysis methods
Download or read book Advanced AI Techniques and Applications in Bioinformatics written by Loveleen Gaur and published by CRC Press. This book was released on 2021-10-18 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers
Download or read book Translational Surgery written by Adam E.M. Eltorai and published by Elsevier. This book was released on 2023-03-22 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translational Surgery covers the principles of evidence-based medicine and applies these principles to the design of translational investigations. The reader will come to fully understand important concepts including case-control studies, prospective cohort studies, randomized trials, and reliability studies. Investigators will benefit from greater confidence in their ability to initiate and execute their own investigations, avoid common pitfalls in surgical research, and know what is needed for collaboration. Further, this title is an indispensable tool in grant writing and funding efforts. The practical, straightforward approach helps the translational research navigate challenging considerations in study design and implementation. The book provides valuable discussions of the critical appraisal of published studies in surgery, allowing the reader to learn how to evaluate the quality of such studies. Thus, they will improve at measuring outcomes; making effective use of all types of evidence in patient care. In short, this practical guidebook will be of interest to every surgeon or surgical researcher who has ever had a good clinical idea, but not the knowledge of how to test it. - Focuses on translational research in Surgery, covering the principles of evidence-based medicine and applying those principles to the design of translational investigations - Provides a practical, straightforward approach to help surgeons and researchers navigate challenging aspects of study design and implementation - Details valuable discussions on the critical appraisal of published studies in Surgery, allowing the reader to effectively use all types of evidence for patient care
Download or read book Machine Learning in Medical Imaging written by Guorong Wu and published by Springer. This book was released on 2014-09-05 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning in Medical Imaging, MLMI 2014, held in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014, in Cambridge, MA, USA, in September 2014. The 40 contributions included in this volume were carefully reviewed and selected from 70 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging.