Download or read book Hypersingular Integrals and Their Applications written by Stefan Samko and published by CRC Press. This book was released on 2001-10-25 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before building more sophisticated ideas, and his discussions include a description of hypersingular integrals as they relate to functional spaces. Hypersingular Integrals and Their Applications also presents recent results and applications that will prove valuable to graduate students and researchers working in mathematical analysis.
Download or read book Hypersingular Integral Equations and Their Applications written by I.K. Lifanov and published by CRC Press. This book was released on 2003-12-29 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co
Download or read book Fractional Integrals and Potentials written by Boris Rubin and published by CRC Press. This book was released on 1996-06-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.
Download or read book Proceedings of the Second ISAAC Congress written by Heinrich G.W. Begehr and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let 8 be a Riemann surface of analytically finite type (9, n) with 29 2+n> O. Take two pointsP1, P2 E 8, and set 8,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso topic to the identity on 8,P2' ThenHomeot(8;P1,P2) is a normal sub pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by & .r(R)(·, .) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf & .r(R)(r, x(r)).
Download or read book Bessel Functions and Their Applications written by B G Korenev and published by CRC Press. This book was released on 2002-07-25 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bessel functions are associated with a wide range of problems in important areas of mathematical physics. Bessel function theory is applied to problems of acoustics, radio physics, hydrodynamics, and atomic and nuclear physics. Bessel Functions and Their Applications consists of two parts. In Part One, the author presents a clear and rigorous intro
Download or read book Topics in Integral and Integro Differential Equations written by Harendra Singh and published by Springer Nature. This book was released on 2021-04-16 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations
Download or read book Selected Topics in Boundary Integral Formulations for Solids and Fluids written by Vladimir Kompiš and published by Springer. This book was released on 2014-05-04 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book outlines special approaches using singular and non-singular, multi-domain and meshless BEM formulations, hybrid- and reciprocity-based FEM for the solution of linear and non-linear problems of solid and fluid mechanics and for the acoustic fluid-structure interaction. Use of Trefftz functions and other regularization approaches to boundary integral equations (BIE), boundary contour and boundary node solution of BIE, sensitivity analysis, shape optimization, error analysis and adaptivity, stress and displacement derivatives in non-linear problems smoothing using Trefftz polynomials and other special numerical approaches are included. Applications to problems such as noise radiation from rolling bodies, acoustic radiation in closed and infinite domains, 3D dynamic piezoelectricity, Stefan problems and coupled problems are included.
Download or read book Fractional Differential Equations written by Anatoly Kochubei and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-02-19 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Download or read book Basic Theory written by Anatoly Kochubei and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-02-19 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.
Download or read book Fractional Deterministic and Stochastic Calculus written by Giacomo Ascione and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-12-31 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integral Operators in Non Standard Function Spaces written by Vakhtang Kokilashvili and published by Birkhäuser. This book was released on 2016-05-11 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
Download or read book On the Nodal Set of Solutions to a Class of Nonlocal Parabolic Equations written by Alessandro Audrito and published by American Mathematical Society. This book was released on 2024-10-23 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Download or read book Methods of Fourier Analysis and Approximation Theory written by Michael Ruzhansky and published by Birkhäuser. This book was released on 2016-03-11 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Download or read book Operational Calculus and Related Topics written by A. P. Prudnikov and published by CRC Press. This book was released on 2006-08-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
Download or read book 14th Chaotic Modeling and Simulation International Conference written by Christos H. Skiadas and published by Springer Nature. This book was released on 2022-06-13 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering the proceedings of the 14th CHAOS2021 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies. Chapter "On the Origin of the Universe: Chaos or Cosmos" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
Download or read book Numerical Integration written by T.O. Espelid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains refereed papers and extended abstracts of papers presented at the NATO Advanced Research Workshop entitled 'Numerical Integration: Recent Develop ments, Software and Applications', held at the University of Bergen, Bergen, Norway, June 17-21,1991. The Workshop was attended by thirty-eight scientists. A total of eight NATO countries were represented. Eleven invited lectures and twenty-three contributed lectures were presented, of which twenty-five appear in full in this volume, together with three extended abstracts and one note. The main focus of the workshop was to survey recent progress in the theory of methods for the calculation of integrals and show how the theoretical results have been used in software development and in practical applications. The papers in this volume fall into four broad categories: numerical integration rules, numerical integration error analysis, numerical integration applications and numerical integration algorithms and software. It is five years since the last workshop of this nature was held, at Dalhousie University in Halifax, Canada, in 1986. Recent theoretical developments have mostly occurred in the area of integration rule construction. For polynomial integrating rules, invariant theory and ideal theory have been used to provide lower bounds on the numbers of points for different types of multidimensional rules, and to help in structuring the nonlinear systems which must be solved to determine the points and weights for the rules. Many new optimal or near optimal rules have been found for a variety of integration regions using these techniques.
Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.