EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hyperpolarized and Inert Gas MRI

Download or read book Hyperpolarized and Inert Gas MRI written by Mitchell S. Albert and published by Academic Press. This book was released on 2016-11-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperpolarized and Inert Gas MRI: Theory and Applications in Research and Medicine is the first comprehensive volume published on HP gas MRI. Since the 1990’s, when HP gas MRI was invented by Dr. Albert and his colleagues, the HP gas MRI field has grown dramatically. The technique has proven to be a useful tool for diagnosis, disease staging, and therapy evaluation for obstructive lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. HP gas MRI has also been developed for functional imaging of the brain and is presently being developed for molecular imaging, including molecules associated with lung cancer, breast cancer, and Alzheimer’s disease. Taking into account the ongoing growth of this field and the potential for future clinical applications, the book pulls together the most relevant and cutting-edge research available in HP gas MRI into one resource. Presents the most comprehensive, relevant, and accurate information on HP gas MRI Co-edited by the co-inventor of HP gas MRI, Dr. Albert, with chapter authors who are the leading experts in their respective sub-disciplines Serves as a foundation of understanding of HP gas MRI for researchers and clinicians involved in research, technology development, and clinical use with HP gas MRI Covers all hyperpolarized gases, including helium, the gas with which the majority of HP gas MRI has been conducted

Book NMR MRI with Hyperpolarized Gas and High Tc SQUID

Download or read book NMR MRI with Hyperpolarized Gas and High Tc SQUID written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

Book Hyperpolarized Noble Gas MRI of Human Lungs in 150G Magnetic Field

Download or read book Hyperpolarized Noble Gas MRI of Human Lungs in 150G Magnetic Field written by Adelaide Zhang and published by . This book was released on 2000 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MRI of the Lung

    Book Details:
  • Author : Hans-Ulrich Kauczor
  • Publisher : Springer Science & Business Media
  • Release : 2008-11-12
  • ISBN : 354034618X
  • Pages : 315 pages

Download or read book MRI of the Lung written by Hans-Ulrich Kauczor and published by Springer Science & Business Media. This book was released on 2008-11-12 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation.

Book Investigation of Lung Structure function Relationships Using Hyperpolarized Noble Gases

Download or read book Investigation of Lung Structure function Relationships Using Hyperpolarized Noble Gases written by Robert P. Thomen and published by . This book was released on 2016 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T2*. Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure, and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR and hyperpolarization theory, construction of dedicated hardware, development of dedicated software, and appropriate image analysis techniques for all acquired data. The author has been actively involved in each of these and has dedicated specific chapters of this dissertation to their description. First, a brief description of lung structure-function investigations and pulmonary imaging will be given (chapter 1). Brief discussions of basic NMR, MRI, and hyperpolarization theory will be given (chapters 2 and 3) followed by their particular methods of implementation in this work (chapters 4 and 5). Analysis of acquired HP gas images will be discussed (chapter 6), and the investigational procedures and results for each lung disease examined will be detailed (chapter 7). Finally, a quick digression on the strengths and limitations of HP gas MRI will be provided (chapter 8).

Book Pulmonary Functional Imaging

Download or read book Pulmonary Functional Imaging written by Yoshiharu Ohno and published by Springer Nature. This book was released on 2020-12-11 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the basics of pulmonary functional imaging using new CT and MR techniques and describes the clinical applications of these techniques in detail. The intention is to equip readers with a full understanding of pulmonary functional imaging that will allow optimal application of all relevant techniques in the assessment of a variety of diseases, including COPD, asthma, cystic fibrosis, pulmonary thromboembolism, pulmonary hypertension, lung cancer and pulmonary nodule. Pulmonary functional imaging has been promoted as a research and diagnostic tool that has the capability to overcome the limitations of morphological assessments as well as functional evaluation based on traditional nuclear medicine studies. The recent advances in CT and MRI and in medical image processing and analysis have given further impetus to pulmonary functional imaging and provide the basis for future expansion of its use in clinical applications. In documenting the utility of state-of-the-art pulmonary functional imaging in diagnostic radiology and pulmonary medicine, this book will be of high value for chest radiologists, pulmonologists, pulmonary surgeons, and radiation technologists.

Book Gas Phase NMR

    Book Details:
  • Author : Karol Jackowski
  • Publisher : Royal Society of Chemistry
  • Release : 2016-02-09
  • ISBN : 1782623817
  • Pages : 419 pages

Download or read book Gas Phase NMR written by Karol Jackowski and published by Royal Society of Chemistry. This book was released on 2016-02-09 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent NMR studies with the application of gaseous molecules. Among the comprehensively discussed aspects of the area it includes in particular: new multinuclear experiments that deliver spectral parameters of isolated molecules and provide the most accurate values of nuclear magnetic shielding, isotropic spin–spin coupling and relaxation times; advanced, precise and correct theoretical descriptions of spectral parameters of molecules as well as the application of gas-phase NMR measurements to chemical analysis and medicine. The progress of research in these fields is enormous and has rapidly changed our knowledge and understanding of molecular parameters in NMR spectroscopy. For example, accurate studies of the shielding for isolated molecules allow the exact determination of nuclear magnetic dipole moments, the calculated values of spectral parameters can be verified by precise gas-phase NMR measurements, and the application of hyperpolarized noble gases provides excellent MRI pictures of lungs. Aimed at graduates and researchers in spectroscopy, analytical chemistry and those researching the applications of NMR in medicine, this book presents the connections between sophisticated experiments, the theory of magnetic parameters and the exploration of new methods in practice.

Book Hyperpolarized Carbon 13 Magnetic Resonance Imaging and Spectroscopy

Download or read book Hyperpolarized Carbon 13 Magnetic Resonance Imaging and Spectroscopy written by Peder Larson and published by Elsevier. This book was released on 2021-11-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR

Book Hyperpolarized Gases in MRI

Download or read book Hyperpolarized Gases in MRI written by H.-U. Kauczor and published by . This book was released on 2000 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Functional Imaging of the Lungs Using Magnetic Resonance Imaging of Inert Fluorinated Gases

Download or read book Functional Imaging of the Lungs Using Magnetic Resonance Imaging of Inert Fluorinated Gases written by Marcus Couch and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluorine-19 (19F) magnetic resonance imaging (MRI) of the lungs using inhaled inert fluorinated gases can potentially provide high quality anatomical and functional images of the lungs. This technique is able to visualize the distribution of the inhaled gas, similar to hyperpolarized (HP) helium-3 (3He) and xenon-129 (129Xe) MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared to HP gases. Due to the high gyromagnetic ratio of 19F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Since inert fluorinated gases do not need to be hyperpolarized prior to their use in MRI, this eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been studied extensively in animals since the 1980s, and more recently in healthy volunteers and patients with lung diseases. This thesis focused on the development of static breath-hold inert fluorinated gas MR imaging techniques, as well as the development functional imaging biomarkers in humans and animal models of pulmonary disease. Optimized ultrashort echo time (UTE) 19F MR imaging was performed in healthy volunteers, and images from different gas breathing techniques were quantitatively compared. 19F UTE MR imaging was then quantitatively compared to 19F gradient echo imaging in both healthy volunteers and in a resolution phantom. A preliminary comparison to HP 3He MR imaging is also presented, along with preliminary 19F measurements of the apparent diffusion coefficient (ADC) and iv gravitational gradients of ventilation in healthy volunteers. The potential of inert fluorinated gas MRI in detecting pulmonary diseases was further explored by performing ventilation mapping in animal models of inflammation and fibrosis. Overall, interest in pulmonary 19F MRI of inert fluorinated gases is increasing, and numerous sites around the world are now interested in developing this technique. This work may help to demonstrate that inert fluorinated gas MRI has the potential to be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.

Book Special issue  Hyperpolarized gases in MRI

Download or read book Special issue Hyperpolarized gases in MRI written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluorine Magnetic Resonance Imaging

Download or read book Fluorine Magnetic Resonance Imaging written by Ulrich Flogel and published by CRC Press. This book was released on 2016-10-26 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, fluorine (19F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community owing to the unique properties of fluorinated materials and the 19F nucleus. Fluorine has an intrinsically sensitive nucleus for MRI. There is negligible endogenous 19F in the body and thus there is no background signal. Fluorine-containing compounds are ideal tracer labels for a wide variety of MRI applications. Moreover, the chemical shift and nuclear relaxation rate can be made responsive to physiology via creative molecular design. This book is an interdisciplinary compendium that details cutting-edge science and medical research in the emerging field of 19F MRI. Edited by Ulrich Flögel and Eric Ahrens, two prominent MRI researchers, this book will appeal to investigators involved in MRI, biomedicine, immunology, pharmacology, probe chemistry, and imaging physics.

Book Protocols and Methodologies in Basic Science and Clinical Cardiac MRI

Download or read book Protocols and Methodologies in Basic Science and Clinical Cardiac MRI written by Christakis Constantinides and published by Springer. This book was released on 2017-10-24 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the practical issues of the implementation of state-of-the-art acquisition methodologies and protocols for both basic science and clinical practice. It is a practical guidebook for both beginners and advanced users for easy and practical implementation of acquisition protocols. It is relevant for a wide audience that ranges from students, residents, fellows, basic scientists, physicists, engineers, and medical practitioners. The novelty of this book relates to its intended practical use and focus on state-of-the-art cardiac MRI techniques that span both the clinical and basic science fields. In comparison and contrast to other pre-existing books, this book will distinguish from others for its practical usefulness and conciseness. Correspondingly, the book will be used as a handbook (quick reference) for new starters or people who would like to establish state-of-the-art cardiac MRI techniques in their institutions. Given the historical evolution of technique development in MRI, the clinical and basic science topics will be described separately. However, in instances where basic science development complemented (or is envisaged to complement) clinical development (e.g., Diffusion MRI and tractography), every effort will be made to allow a comprehensive review and associations of the clinical/basic science subfields.