EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hyperbolic Manifolds and Kleinian Groups

Download or read book Hyperbolic Manifolds and Kleinian Groups written by Katsuhiko Matsuzaki and published by Clarendon Press. This book was released on 1998-04-30 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.

Book Hyperbolic Manifolds and Discrete Groups

Download or read book Hyperbolic Manifolds and Discrete Groups written by Michael Kapovich and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Book Outer Circles

    Book Details:
  • Author : A. Marden
  • Publisher : Cambridge University Press
  • Release : 2007-05-31
  • ISBN : 1139463764
  • Pages : 393 pages

Download or read book Outer Circles written by A. Marden and published by Cambridge University Press. This book was released on 2007-05-31 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

Book The Arithmetic of Hyperbolic 3 Manifolds

Download or read book The Arithmetic of Hyperbolic 3 Manifolds written by Colin Maclachlan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

Book Foundations of Hyperbolic Manifolds

Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Book Complex Kleinian Groups

    Book Details:
  • Author : Angel Cano
  • Publisher : Springer Science & Business Media
  • Release : 2012-11-05
  • ISBN : 3034804814
  • Pages : 288 pages

Download or read book Complex Kleinian Groups written by Angel Cano and published by Springer Science & Business Media. This book was released on 2012-11-05 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.​

Book Fundamentals of Hyperbolic Manifolds

Download or read book Fundamentals of Hyperbolic Manifolds written by R. D. Canary and published by Cambridge University Press. This book was released on 2006-04-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

Book Hyperbolic Manifolds

    Book Details:
  • Author : Albert Marden
  • Publisher : Cambridge University Press
  • Release : 2016-02-01
  • ISBN : 1316432521
  • Pages : 535 pages

Download or read book Hyperbolic Manifolds written by Albert Marden and published by Cambridge University Press. This book was released on 2016-02-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.

Book Renormalization and 3 manifolds which Fiber Over the Circle

Download or read book Renormalization and 3 manifolds which Fiber Over the Circle written by Curtis T. McMullen and published by Princeton University Press. This book was released on 1996-07-28 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.

Book The Geometry and Topology of Three Manifolds

Download or read book The Geometry and Topology of Three Manifolds written by William P. Thurston and published by American Mathematical Society. This book was released on 2023-06-16 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.

Book Conformal Geometry of Discrete Groups and Manifolds

Download or read book Conformal Geometry of Discrete Groups and Manifolds written by Boris Nikolaevich Apanasov and published by Walter de Gruyter. This book was released on 2000 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Conformal Geometry of Discrete Groups and Manifolds".

Book Essays in Group Theory

    Book Details:
  • Author : S.M. Gersten
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461395860
  • Pages : 346 pages

Download or read book Essays in Group Theory written by S.M. Gersten and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essays in Group Theory contains five papers on topics of current interest which were presented in a seminar at MSRI, Berkeley in June, 1985. Special mention should be given to Gromov`s paper, one of the most significant in the field in the last decade. It develops the theory of hyperbolic groups to include a version of small cancellation theory sufficiently powerful to recover deep results of Ol'shanskii and Rips. Each of the remaining papers, by Baumslag and Shalen, Gersten, Shalen, and Stallings contains gems. For example, the reader will delight in Stallings' explicit construction of free actions of orientable surface groups on R-trees. Gersten's paper lays the foundations for a theory of equations over groups and contains a very quick solution to conjugacy problem for a class of hyperbolic groups. Shalen's article reviews the rapidly expanding theory of group actions on R-trees and the Baumslag-Shalen article uses modular representation theory to establish properties of presentations whose relators are pth-powers.

Book The Hyperbolization Theorem for Fibered 3 Manifolds

Download or read book The Hyperbolization Theorem for Fibered 3 Manifolds written by Jean-Pierre Otal and published by American Mathematical Soc.. This book was released on 2001 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate students familiar with low-dimensional topology and researchers in geometry and topology, Otal (CNRS-UMR 128, Lyon) offers a complete proof of Thurston's hyperbolization theorem for 3-manifolds that fiber as surface bundles. The original Le Theoreme d'Hyperbolisation pour les Varietes de Dimension 3, published by the French Mathematical Society in 1996, has been translated by Leslie D. Kay. c. Book News Inc.

Book Teichm  ller Theory and Applications to Geometry  Topology  and Dynamics

Download or read book Teichm ller Theory and Applications to Geometry Topology and Dynamics written by John Hamal Hubbard and published by . This book was released on 2022-02 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Dimensional Geometry

Download or read book Low Dimensional Geometry written by Francis Bonahon and published by American Mathematical Soc.. This book was released on 2009-07-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.

Book Automorphisms of Surfaces After Nielsen and Thurston

Download or read book Automorphisms of Surfaces After Nielsen and Thurston written by Andrew J. Casson and published by Cambridge University Press. This book was released on 1988-08-18 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to selected aspects of modern low-dimensional topology for readers with a knowledge of basic algebra.

Book Hyperbolic Knot Theory

    Book Details:
  • Author : Jessica S. Purcell
  • Publisher : American Mathematical Soc.
  • Release : 2020-10-06
  • ISBN : 1470454998
  • Pages : 369 pages

Download or read book Hyperbolic Knot Theory written by Jessica S. Purcell and published by American Mathematical Soc.. This book was released on 2020-10-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.