EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hyperarithmetical Relations and Existentially Decidable Models in Recursive Model Theory

Download or read book Hyperarithmetical Relations and Existentially Decidable Models in Recursive Model Theory written by Tammo Michael Reisewitz and published by . This book was released on 1992 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 1993 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1992 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turing s Legacy

    Book Details:
  • Author : Rod Downey
  • Publisher : Cambridge University Press
  • Release : 2014-05-01
  • ISBN : 1139916831
  • Pages : 540 pages

Download or read book Turing s Legacy written by Rod Downey and published by Cambridge University Press. This book was released on 2014-05-01 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alan Turing was an inspirational figure who is now recognised as a genius of modern mathematics. In addition to leading the Allied forces' code-breaking effort at Bletchley Park in World War II, he proposed the theoretical foundations of modern computing and anticipated developments in areas from information theory to computer chess. His ideas have been extraordinarily influential in modern mathematics and this book traces such developments by bringing together essays by leading experts in logic, artificial intelligence, computability theory and related areas. Together, they give insight into this fascinating man, the development of modern logic, and the history of ideas. The articles within cover a diverse selection of topics, such as the development of formal proof, differing views on the Church–Turing thesis, the development of combinatorial group theory, and Turing's work on randomness which foresaw the ideas of algorithmic randomness that would emerge many years later.

Book Computable Structure Theory

Download or read book Computable Structure Theory written by Antonio Montalbán and published by Cambridge University Press. This book was released on 2021-06-24 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.

Book Degree Spectra of Relations on a Cone

Download or read book Degree Spectra of Relations on a Cone written by Matthew Harrison-Trainor and published by American Mathematical Soc.. This book was released on 2018-05-29 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable copies of $\mathcal A$ when $(\mathcal A,R)$ is a ``natural'' structure, or (to make this rigorous) among copies of $(\mathcal A,R)$ computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on $\mathcal A$ and $R$, if $R$ is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees.

Book Subsystems of Second Order Arithmetic

Download or read book Subsystems of Second Order Arithmetic written by Stephen George Simpson and published by Cambridge University Press. This book was released on 2009-05-29 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume examines appropriate axioms for mathematics to prove particular theorems in core areas.

Book Finite Model Theory and Its Applications

Download or read book Finite Model Theory and Its Applications written by Erich Grädel and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.

Book Computability  Forcing and Descriptive Set Theory

Download or read book Computability Forcing and Descriptive Set Theory written by Douglas Cenzer and published by World Scientific Publishing Company. This book was released on 2019-12-31 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium. Contents: Limits of the Kucerea-Gacs Coding Method (George Barmpalias and Andrew Lewis-Pye);Infinitary partition properties of sums of selective ultrafilters (Andreas Blass);Semiselective Coideals and Ramsey Sets (Carlos DiPrisco and Leonardo Pacheco);Survey on Topological Ramsey Spaces Dense in Forcings (Natasha Dobrinen);Higher Computability in the Reverse Mathematics of Borel Determinacy (Sherwood Hachtman);Computability and Definability (Valentina Harizanov);A Ramsey Space of Infinite Polyhedra and the Random Polyhedron (Jose G Mijares Palacios and Gabriel Padilla);Computable Reducibility for Cantor Space (Russell G Miller);Information vs Dimension - An Algorithmic Perspective (Jan Reimann); Readership: Graduate students and researchers interested in the interface between set theory and computability.

Book Computability

    Book Details:
  • Author : B. Jack Copeland
  • Publisher : MIT Press
  • Release : 2013-06-07
  • ISBN : 0262018993
  • Pages : 373 pages

Download or read book Computability written by B. Jack Copeland and published by MIT Press. This book was released on 2013-06-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments. In the 1930s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics. In the decades since, the theory of computability has moved to the center of discussions in philosophy, computer science, and cognitive science. In this volume, distinguished computer scientists, mathematicians, logicians, and philosophers consider the conceptual foundations of computability in light of our modern understanding.Some chapters focus on the pioneering work by Turing, Gödel, and Church, including the Church-Turing thesis and Gödel's response to Church's and Turing's proposals. Other chapters cover more recent technical developments, including computability over the reals, Gödel's influence on mathematical logic and on recursion theory and the impact of work by Turing and Emil Post on our theoretical understanding of online and interactive computing; and others relate computability and complexity to issues in the philosophy of mind, the philosophy of science, and the philosophy of mathematics.ContributorsScott Aaronson, Dorit Aharonov, B. Jack Copeland, Martin Davis, Solomon Feferman, Saul Kripke, Carl J. Posy, Hilary Putnam, Oron Shagrir, Stewart Shapiro, Wilfried Sieg, Robert I. Soare, Umesh V. Vazirani

Book A Hierarchy of Turing Degrees

Download or read book A Hierarchy of Turing Degrees written by Rod Downey and published by Princeton University Press. This book was released on 2020-06-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Alpha]-c.a. functions -- The hierarchy of totally [alpha]-c.a. degrees -- Maximal totally [alpha]-c.a. degrees -- Presentations of left-c.e. reals -- m-topped degrees -- Embeddings of the 1-3-1 lattice -- Prompt permissions.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2001 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recursive Model Theory

Download or read book Recursive Model Theory written by and published by Elsevier. This book was released on 1998-11-30 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recursive Model Theory

Book Handbook of Computability Theory

Download or read book Handbook of Computability Theory written by E.R. Griffor and published by Elsevier. This book was released on 1999-10-01 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

Book An Introduction to Kolmogorov Complexity and Its Applications

Download or read book An Introduction to Kolmogorov Complexity and Its Applications written by Ming Li and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).

Book Proof Theory

    Book Details:
  • Author : Wolfram Pohlers
  • Publisher : Springer
  • Release : 2009-06-10
  • ISBN : 3540468250
  • Pages : 220 pages

Download or read book Proof Theory written by Wolfram Pohlers and published by Springer. This book was released on 2009-06-10 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.

Book Higher Order Computability

Download or read book Higher Order Computability written by John Longley and published by Springer. This book was released on 2015-11-06 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers