EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hot carrier Effects in P MOSFETs

Download or read book Hot carrier Effects in P MOSFETs written by Tong-Chern Ong and published by . This book was released on 1988 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot Carrier Effects in MOS Devices

Download or read book Hot Carrier Effects in MOS Devices written by Eiji Takeda and published by Academic Press. This book was released on 1995 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world. This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work encompasses not only all the latest research and discoveries made in the fast-paced area of hot carriers, but also includes the basics of MOS devices, and the practical considerations related to hot carriers. Chapter one itself is a comprehensive review of MOS device physics which allows a reader with little background in MOS devices to pick up a sufficient amount of information to be able to follow the rest of the book The book is written to allow the reader to learn about MOS Device Reliability in a relatively short amount of time, making the texts detailed treatment of hot-carrier effects especially useful and instructive to both researchers and others with varyingamounts of experience in the field The logical organization of the book begins by discussing known principles, then progresses to empirical information and, finally, to practical solutions Provides the most complete review of device degradation mechanisms as well as drain engineering methods Contains the most extensive reference list on the subject

Book Hot Carrier Effects in MOS Devices

Download or read book Hot Carrier Effects in MOS Devices written by Eiji Takeda and published by Elsevier. This book was released on 1995-11-28 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world. This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work encompasses not only all the latest research and discoveries made in the fast-paced area of hot carriers, but also includes the basics of MOS devices, and the practical considerations related to hot carriers. Chapter one itself is a comprehensive review of MOS device physics which allows a reader with little background in MOS devices to pick up a sufficient amount of information to be able to follow the rest of the book The book is written to allow the reader to learn about MOS Device Reliability in a relatively short amount of time, making the texts detailed treatment of hot-carrier effects especially useful and instructive to both researchers and others with varyingamounts of experience in the field The logical organization of the book begins by discussing known principles, then progresses to empirical information and, finally, to practical solutions Provides the most complete review of device degradation mechanisms as well as drain engineering methods Contains the most extensive reference list on the subject

Book Investigation of Hot Carrier Effects in P mosfet

Download or read book Investigation of Hot Carrier Effects in P mosfet written by Tonita Seli and published by . This book was released on 2000 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MOSFET Performance Degradation Due to Hot Carriers

Download or read book MOSFET Performance Degradation Due to Hot Carriers written by Jeong Yeol Choi and published by . This book was released on 1987 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot electron Effects in Si MOSFETs

Download or read book Hot electron Effects in Si MOSFETs written by Simon Mun-Kong Tam and published by . This book was released on 1984 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot carrier Effects in Thin Gate Oxide MOSFET s

Download or read book Hot carrier Effects in Thin Gate Oxide MOSFET s written by Leng Kian See and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Short Channel Effects in Hot Carrier Degradation of MOSFETs

Download or read book Short Channel Effects in Hot Carrier Degradation of MOSFETs written by Krishnaraj S. Rao and published by . This book was released on 1994 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot Carrier Degradation in Semiconductor Devices

Download or read book Hot Carrier Degradation in Semiconductor Devices written by Tibor Grasser and published by Springer. This book was released on 2014-10-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Book Hot Carrier Reliability of MOS VLSI Circuits

Download or read book Hot Carrier Reliability of MOS VLSI Circuits written by Yusuf Leblebici and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the complexity and the density of VLSI chips increase with shrinking design rules, the evaluation of long-term reliability of MOS VLSI circuits is becoming an important problem. The assessment and improvement of reliability on the circuit level should be based on both the failure mode analysis and the basic understanding of the physical failure mechanisms observed in integrated circuits. Hot-carrier induced degrada tion of MOS transistor characteristics is one of the primary mechanisms affecting the long-term reliability of MOS VLSI circuits. It is likely to become even more important in future generation chips, since the down ward scaling of transistor dimensions without proportional scaling of the operating voltage aggravates this problem. A thorough understanding of the physical mechanisms leading to hot-carrier related degradation of MOS transistors is a prerequisite for accurate circuit reliability evaluation. It is also being recognized that important reliability concerns other than the post-manufacture reliability qualification need to be addressed rigorously early in the design phase. The development and use of accurate reliability simulation tools are therefore crucial for early assessment and improvement of circuit reliability : Once the long-term reliability of the circuit is estimated through simulation, the results can be compared with predetermined reliability specifications or limits. If the predicted reliability does not satisfy the requirements, appropriate design modifications may be carried out to improve the resistance of the devices to degradation.

Book Study of hot carrier effects in submicron MOSFET s

Download or read book Study of hot carrier effects in submicron MOSFET s written by Yun-Kang Kevin Wu and published by . This book was released on 1992 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Science and Technology of Semiconductor On Insulator Structures and Devices Operating in a Harsh Environment

Download or read book Science and Technology of Semiconductor On Insulator Structures and Devices Operating in a Harsh Environment written by Denis Flandre and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on “Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment” held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.

Book MOSFET Models for VLSI Circuit Simulation

Download or read book MOSFET Models for VLSI Circuit Simulation written by Narain D. Arora and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.

Book Extreme Environment Electronics

Download or read book Extreme Environment Electronics written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Book Hot Carrier Design Considerations for MOS Devices and Circuits

Download or read book Hot Carrier Design Considerations for MOS Devices and Circuits written by Cheng Wang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: As device dimensions decrease, hot-carrier effects, which are due mainly to the presence of a high electric field inside the device, are becoming a major design concern. On the one hand, the detrimental effects-such as transconductance degradation and threshold shift-need to be minimized or, if possible, avoided altogether. On the other hand, performance such as the programming efficiency of nonvolatile memories or the carrier velocity inside the devices-need to be maintained or improved through the use of submicron technologies, even in the presence of a reduced power supply. As a result, one of the major challenges facing MOS design engineers today is to harness the hot-carrier effects so that, without sacrificing product performance, degradation can be kept to a minimum and a reli able design obtained. To accomplish this, the physical mechanisms re sponsible for the degradations should first be experimentally identified and characterized. With adequate models thus obtained, steps can be taken to optimize the design, so that an adequate level of quality assur ance in device or circuit performance can be achieved. This book ad dresses these hot-carrier design issues for MOS devices and circuits, and is used primarily as a professional guide for process development engi neers, device engineers, and circuit designers who are interested in the latest developments in hot-carrier degradation modeling and hot-carrier reliability design techniques. It may also be considered as a reference book for graduate students who have some research interests in this excit ing, yet sometime controversial, field.

Book Advanced MOS Device Physics

Download or read book Advanced MOS Device Physics written by Norman Einspruch and published by Elsevier. This book was released on 2012-12-02 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: VLSI Electronics Microstructure Science, Volume 18: Advanced MOS Device Physics explores several device physics topics related to metal oxide semiconductor (MOS) technology. The emphasis is on physical description, modeling, and technological implications rather than on the formal aspects of device theory. Special attention is paid to the reliability physics of small-geometry MOSFETs. Comprised of eight chapters, this volume begins with a general picture of MOS technology development from the device and processing points of view. The critical issue of hot-carrier effects is discussed, along with the device engineering aspects of this problem; the emerging low-temperature MOS technology; and the problem of latchup in scaled MOS circuits. Several device models that are suitable for use in circuit simulators are also described. The last chapter examines novel electron transport effects observed in ultra-small MOS structures. This book should prove useful to semiconductor engineers involved in different aspects of MOS technology development, as well as for researchers in this field and students of the corresponding disciplines.