Download or read book Classical Hopf Algebras and Their Applications written by Pierre Cartier and published by Springer Nature. This book was released on 2021-09-20 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Download or read book Hopf Algebras and Root Systems written by István Heckenberger and published by American Mathematical Soc.. This book was released on 2020-06-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize Nichols algebras. As applications of these results, the book contains a classification of right coideal subalgebras of quantum groups and of the small quantum groups, and a proof of the existence of PBW-bases that does not involve case by case considerations. The authors also include short chapter summaries at the beginning of each chapter and historical notes at the end of each chapter. The theory of Cartan graphs, Weyl groupoids, and generalized root systems appears here for the first time in a book form. Hence, the book serves as an introduction to the modern classification theory of pointed Hopf algebras for advanced graduate students and researchers working in categorial aspects and classification theory of Hopf algebras and their generalization.
Download or read book An Introduction to Hopf Algebras written by Robert G. Underwood and published by Springer Science & Business Media. This book was released on 2011-08-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Only book on Hopf algebras aimed at advanced undergraduates
Download or read book Hopf Algebras and Their Actions on Rings written by Susan Montgomery and published by American Mathematical Soc.. This book was released on 1993-10-28 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.
Download or read book Hopf Algebras and Galois Theory written by Stephen U. Chase and published by Springer. This book was released on 2007-01-05 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hopf Algebra written by Sorin Dascalescu and published by CRC Press. This book was released on 2000-09-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.
Download or read book Hopf Algebras written by David E. Radford and published by World Scientific. This book was released on 2012 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Download or read book Representations of Finite Classical Groups written by A. V. Zelevinsky and published by Springer. This book was released on 2006-11-14 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quasi Hopf Algebras written by Daniel Bulacu and published by Cambridge University Press. This book was released on 2019-02-21 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Download or read book Hopf Algebras written by David E Radford and published by World Scientific. This book was released on 2011-12-28 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Download or read book Hopf Algebras written by Jeffrey Bergen and published by CRC Press. This book was released on 2004-01-28 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.
Download or read book Hopf Algebras written by Eiichi Abe and published by Cambridge University Press. This book was released on 2004-06-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the basic theory of Hopf algebras for those familiar with basic linear and commutative algebra.
Download or read book Hopf Algebras and Galois Module Theory written by Lindsay N. Childs and published by American Mathematical Soc.. This book was released on 2021-11-10 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.
Download or read book Monoidal Functors Species and Hopf Algebras written by Marcelo Aguiar and published by American Mathematical Soc.. This book was released on 2010 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph integrates ideas from category theory, algebra and combinatorics. It is organized in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Benabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students.
Download or read book Foundations of Quantum Group Theory written by Shahn Majid and published by Cambridge University Press. This book was released on 2000 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text which systematically lays out the foundations of Quantum Groups.
Download or read book A Quantum Groups Primer written by Shahn Majid and published by Cambridge University Press. This book was released on 2002-04-04 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
Download or read book Quantum Groups written by Christian Kassel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.