Download or read book Homogenization Methods For Multiscale Mechanics written by Chiang C Mei and published by World Scientific. This book was released on 2010-09-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many physical problems several scales are present in space or time, caused by inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenization.The authors share the view that the general methods of homogenization should be more widely understood and practiced by applied scientists and engineers. Hence this book is aimed at providing a less abstract treatment of the theory of homogenization for treating inhomogeneous media, and at illustrating its broad range of applications. Each chapter deals with a different class of physical problems. To tackle a new problem, the approach of first discussing the physically relevant scales, then identifying the small parameters and their roles in the normalized governing equations is adopted. The details of asymptotic analysis are only explained afterwards.
Download or read book Getting Acquainted with Homogenization and Multiscale written by Leonid Berlyand and published by Springer. This book was released on 2018-11-22 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to navigate beginning graduate students in mathematics and engineering through a mature field of multiscale problems in homogenization theory and to provide an idea of its broad scope. An overview of a wide spectrum of homogenization techniques ranging from classical two-scale asymptotic expansions to Gamma convergence and the rapidly developing field of stochastic homogenization is presented. The mathematical proofs and definitions are supplemented with intuitive explanations and figures to make them easier to follow. A blend of mathematics and examples from materials science and engineering is designed to teach a mixed audience of mathematical and non-mathematical students.
Download or read book Homogenization Theory for Multiscale Problems written by Xavier Blanc and published by Springer Nature. This book was released on 2023-04-29 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a pedagogic and comprehensive introduction to homogenization theory with a special focus on problems set for non-periodic media. The presentation encompasses both deterministic and probabilistic settings. It also mixes the most abstract aspects with some more practical aspects regarding the numerical approaches necessary to simulate such multiscale problems. Based on lecture courses of the authors, the book is suitable for graduate students of mathematics and engineering.
Download or read book Multiscale Methods written by Grigoris Pavliotis and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.
Download or read book Multiscale Problems Theory Numerical Approximation And Applications written by Alain Damlamian and published by World Scientific. This book was released on 2011-10-13 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier-Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.
Download or read book An Introduction to Homogenization written by Doïna Cioranescu and published by Oxford University Press on Demand. This book was released on 1999 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are widely used in industry: well-known examples of this are the superconducting multi-filamentary composites which are used in the composition of optical fibres. Such materials are complicated to model, as different points in the material will have different properties. The mathematical theory of homogenization is designed to deal with this problem, and hence is used to model the behaviour of these important materials. This book provides a self-contained and authoritative introduction to the subject for graduates and researchers in the field.
Download or read book Multiscale Modeling Approaches for Composites written by George Chatzigeorgiou and published by Elsevier. This book was released on 2022-01-07 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory. - Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them - Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more - Discusses how to obtain composite properties using different boundary conditions - Includes access to a companion site, featuring the numerical examples, Python and ABACUS codes discussed in the book
Download or read book Principles of Multiscale Modeling written by Weinan E and published by Cambridge University Press. This book was released on 2011-07-07 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic discussion of the fundamental principles, written by a leading contributor to the field.
Download or read book Continuum Micromechanics written by P. Suquet and published by Springer. This book was released on 2014-05-04 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent progress of fundamental nature made in the new developed field of micromechanics: transformation field analysis, variational bounds for nonlinear composites, higher-order gradients in micromechanical damage models, dynamics of composites, pattern based variational bounds.
Download or read book Computational Homogenization of Heterogeneous Materials with Finite Elements written by Julien Yvonnet and published by Springer. This book was released on 2019-06-11 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a concise overview of the main theoretical and numerical tools to solve homogenization problems in solids with finite elements. Starting from simple cases (linear thermal case) the problems are progressively complexified to finish with nonlinear problems. The book is not an overview of current research in that field, but a course book, and summarizes established knowledge in this area such that students or researchers who would like to start working on this subject will acquire the basics without any preliminary knowledge about homogenization. More specifically, the book is written with the objective of practical implementation of the methodologies in simple programs such as Matlab. The presentation is kept at a level where no deep mathematics are required.
Download or read book Composite Media and Homogenization Theory written by Gianni Dal Maso and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the Proceedings of the Workshop on Composite Media and Homogenization Theory held in Trieste, Italy, from January 15 to 26, 1990. The workshop was organized by the International Centre for Theo retical Physics (ICTP); part of the activity was co-sponsored by the Interna tional School for Advanced Studies (SISSA). The workshop covered a broad range of topics in the mathematical the ory of composite materials and homogenization. Among the specific areas of focus were homogenization of periodic and nonperiodic structures, porous me dia, asymptotic analysis for linear and nonlinear problems, optimal bounds for effective moduli, waves in composite materials, optimal design and relaxation, random media. The workshop was actively attended by more than 100 participants from 23 countries. In the afternoon sessions 35 seminars were delivered by the participants. This volume contains research articles corresponding to 14 of the 20 invited talks which were presented. Its content will be of interest both to mathematicians working in the field and to applied mathematicians and engineers interested in modelling the behaviour of composite and random media We are pleased to express here our thanks to the ICTP for having made this workshop possible, to Ms. A. Bergamo for her continuous help during the workshop, and to Ms. C. Parma for her collaboration in editing the proceedings. Gianni Dal Maso Gian Fausto Dell'Antonio SIS SA, Trieste Universita "La Sapienza", Roma v Contents Preface ... v List of Speakers ... ix Contributors ... ... ... ... . xiii ... ... ...
Download or read book Applications of Homogenization Theory to the Study of Mineralized Tissue written by Robert P. Gilbert and published by CRC Press. This book was released on 2020-12-28 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As for students and instructors, this book is a well-rounded and comprehensive text on the topic of homogenization for graduate level courses or special mathematics classes. Features: Covers applications in both geophysics and biology. Includes recent results not found in classical books on the topic Focuses on evolutionary kinds of problems; there is little overlap with books dealing with variational methods and T-convergence Includes new results where the G-limits have different structures from the initial operators
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics written by Peter Gumbsch and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.
Download or read book Encyclopedia of Computational Mechanics written by Erwin Stein and published by . This book was released on 2004 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.
Download or read book Homogenization written by Robert P. Gilbert and published by Chapman and Hall/CRC. This book was released on 2016-06-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to homogenization, a modeling procedure used to describe processes in complicated structures with known microstructures. It first presents the theoretical foundations of this powerful tool of analysis. Building on the theory, the authors explore various types of application problems, including flow in porous media, sound propagation in fluid saturated solids, acoustics of granular material, computational multiscale finite element methods, and interfaces in viscoelastic materials. The book also discusses results in which G-limits have different structures from the initial operators.
Download or read book Multi scale Modelling for Structures and Composites written by G. Panasenko and published by Springer Science & Business Media. This book was released on 2005-02-09 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous applications of rod structures in civil engineering, aircraft and spacecraft confirm the importance of the topic. On the other hand the majority of books on structural mechanics use some simplifying hypotheses; these hypotheses do not allow to consider some important effects, for instance the boundary layer effects near the points of junction of rods. So the question concerning the limits of applicability of structural mechanics hypotheses and the possibilities of their refinement arise. In this connection the asymptotic analysis of equations of mathematical physics, the equations of elasticity in rod structures (without these hypotheses and simplifying assumptions being imposed) is undertaken in the present book. Moreover, a lot of modern structures are made of composite materials and therefore the material of the rods is not homogeneous. This inhomogeneity of the material can generate some unexpected effects. These effects are analysed in this book. The methods of multi-scale modelling are presented by the homogenization, multi-level asymptotic analysis and the domain decomposition. These methods give an access to a new class of hybrid models combining macroscopic description with "microscopic zooms".