EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Highly Integrated Microfluidics Design

Download or read book Highly Integrated Microfluidics Design written by Dan E. Angelescu and published by Artech House. This book was released on 2011 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent development of microfluidics has lead to the concept of lab-on-a-chip, where several functional blocks are combined into a single device that can perform complex manipulations and characterizations on the microscopic fluid sample. However, integration of multiple functionalities on a single device can be complicated. This a cutting-edge resource focuses on the crucial aspects of integration in microfluidic systems. It serves as a one-stop guide to designing microfluidic systems that are highly integrated and scalable. This practical book covers a wide range of critical topics, from fabrication techniques and simulation tools, to actuation and sensing functional blocks and their inter-compatibility. This unique reference outlines the benefits and drawbacks of different approaches to microfluidic integration and provides a number of clear examples of highly integrated microfluidic systems.

Book Computer Aided Design of Microfluidic Very Large Scale Integration  mVLSI  Biochips

Download or read book Computer Aided Design of Microfluidic Very Large Scale Integration mVLSI Biochips written by Kai Hu and published by Springer. This book was released on 2017-04-05 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques.

Book Microfluidic Very Large Scale Integration  VLSI

Download or read book Microfluidic Very Large Scale Integration VLSI written by Paul Pop and published by Springer. This book was released on 2016-02-08 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described facilitate programmability and automation, enabling developers in the emerging, large biochip market.

Book Microfluidics

Download or read book Microfluidics written by Sebastian Seiffert and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-12-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics introduces the theory and practice of fluid flow on small scales. The exquisite control of such flow at low Reynolds numbers allows liquids to be processed in either a well-defined co-flow or a well-defined segmented-flow fashion. Both lays a ground for high-throughput analytics and advanced materials design. With that, this book is ideal for research scientists and Ph.D. students in the fields of chemistry, chemical engineering, biotechnology, and materials science.

Book Designing Droplet Microfluidic Networks

Download or read book Designing Droplet Microfluidic Networks written by Andreas Grimmer and published by Springer. This book was released on 2019-07-04 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes automatic methods for the design of droplet microfluidic networks. The authors discuss simulation and design methods which support the design process of droplet microfluidics in general, as well as design methods for a dedicated droplet routing mechanism, namely passive droplet routing. The methods discussed allow for simulating a microfluidic design on a high-abstraction level, which facilitates early validation of whether a design works as intended, automatically dimensioning a microfluidic design, so that constraints like flow conditions are satisfied, and automatically generating meander designs for the respective needs and fabrication settings. Dedicated methods for passive droplet routing are discussed and allow for designing application-specific architectures for a given set of experiments, as well as generating droplet sequences realizing the respective experiments. Together, these methods provide a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular. Provides both a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular; Describes for the first time CAD methods for droplet microfluidic networks, along with the first integrated design process; Includes open source implementations, in order to reach the largest possible user group within the domain of microfluidics.

Book Micro Injection Moulding Of Three Dimensional Integrated Microfluidic Devices

Download or read book Micro Injection Moulding Of Three Dimensional Integrated Microfluidic Devices written by Usama M. Attia and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the use of micro-injection moulding (?IM), as a high-volume process, for producing three-dimensional, integrated microfluidic devices. It started with literature reviews that covered three topics:?IM of thermoplastic microfluidics, designing for three-dimensional (3-D) microfluidics and functional integration in?IM. Research gaps were identified: Designing 3-D microfluidics within the limitations of?IM, process optimisation and the integration of functional elements. A process chain was presented to fabricate a three-dimensional microfluidic device for medical application by?IM. The thesis also investigated the effect of processing conditions on the quality of the replicated component. The design-of-experiments (DOE) approach is used to highlight the significant processing conditions that affect the part mass taking into consideration the change in part geometry. The approach was also used to evaluate the variability within the process and its effect on the replicability of the process. Part flatness was also evaluated with respect to post-filling process parameters. The thesis investigated the possibility of integrating functional elements within?IM to produce microfluidic devices with hybrid structures. The literature reviews highlighted the importance of quality control in high-volume micromoulding and in-line functional integration in microfluidics. A taxonomy of process integration was also developed based on transformation functions. The experimental results showed that?IM can be used to fabricate microfluidic devices that have true three-dimensional structures by subsequent lamination. The DOE results showed a significant effect of individual process variables on the filling quality of the produced components and their flatness. The geometry of the replicated component was shown to have effect on influential parameters. Other variables, on the other hand, were shown to have a possible effect on process variability. Optimization statistical tools were used to improve multiple quality criteria. Thermoplastic elastomers (TPE) were processed with?IM to produce hybrid structures with functional elements.

Book CMOS Integrated Lab on a chip System for Personalized Biomedical Diagnosis

Download or read book CMOS Integrated Lab on a chip System for Personalized Biomedical Diagnosis written by Hao Yu and published by John Wiley & Sons. This book was released on 2018-04-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology. A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics. From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference: Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.

Book Joining Technologies

Download or read book Joining Technologies written by Mahadzir Ishak and published by BoD – Books on Demand. This book was released on 2016-09-21 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Joining and welding are two of the most important processes in manufacturing. These technologies have vastly improved and are now extensively used in numerous industries. This book covers a wide range of topics, from arc welding (GMAW and GTAW), FSW, laser and hybrid welding, and magnetic pulse welding on metal joining to the application of joining technologies for textile products. The analysis of temperature and phase transformation is also incorporated. This book also discusses the issue of dissimilar joint between metal and ceramic, as well as the technology of diffusion bonding.

Book Fundamentals and Applications of Microfluidics

Download or read book Fundamentals and Applications of Microfluidics written by Nam-Trung Nguyen and published by Integrated Microsystems. This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its Third Edition, the Artech House bestseller, Fundamentals and Applications of Microfluidics, provides engineers and students with the most complete and current coverage of this cutting-edge field. This revised and expanded edition provides updated discussions throughout and features critical new material on microfluidic power sources, sensors, cell separation, organ-on-chip and drug delivery systems, 3D culture devices, droplet-based chemical synthesis, paper-based microfluidics for point-of-care, ion concentration polarization, micro-optofluidics and micro-magnetofluidics. The book shows how to take advantage of the performance benefits of microfluidics and serves as an instant reference for state-of-the-art microfluidics technology and applications. Readers find discussions on a wide range of applications, including fluid control devices, gas and fluid measurement devices, medical testing equipment, and implantable drug pumps. Professionals get practical guidance in choosing the best fabrication and enabling technology for a specific microfluidic application, and learn how to design a microfluidic device. Moreover, engineers get simple calculations, ready-to-use data tables, and rules of thumb that help them make design decisions and determine device characteristics quickly. addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.

Book Microfluidic Biosensors

Download or read book Microfluidic Biosensors written by Wing Cheung Mak and published by Elsevier. This book was released on 2022-11-05 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic Biosensors provides a comprehensive overview covering the most recent emerging technologies on the design, fabrication, and integration of microfluidics with transducers. These form various integrated microfluidic biosensors with device configurations ranging from 2D to 4D levels. Coverage also includes advanced printed microfluidic biosensors, flexible microfluidics for wearable biosensors, autonomous lab-on-a-chip biosensors, CMOS-base microanalysis systems, and microfluidic devices for mobile phone biosensing. The editors and contributors of this book represent both academia and industry, come from a varied range of backgrounds, and offer a global perspective. This book discusses the design and principle of microfluidic systems and uses them for biosensing applications. The microfluidic fabrication technologies covered in this book provide an up-to-date view, allowing the community to think of new ways to overcome challenges faced in this field. The focus is on existing and emerging technologies not currently being analyzed extensively elsewhere, providing a unique perspective and much-needed content. The editors have crafted this book to be accessible to all levels of academics from graduate students, researchers, and professors working in the fields of biosensors, microfluidics design, material science, analytical chemistry, biomedical devices, and biomedical engineering. It can also be useful for industry professionals working for microfluidic device manufacturers, or in the industry of biosensors and biomedical devices. Presents an in-depth overview of microfluidic biosensors and associated emerging technologies such as printed microfluidics and novel transducers Addresses a range of microfluidic biosensors with device configurations ranging from 2D to 4D levels Includes the commercialization aspects of microfluidic biosensors that provide insights for scientists and engineers in research and development

Book Robotic Cell Manipulation

Download or read book Robotic Cell Manipulation written by Dong Sun and published by Academic Press. This book was released on 2022-05-31 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robotic Cell Manipulation introduces up-to-date research to realize this new theme of medical robotics. The book is organized in three levels: operation tools (e.g., optical tweezers, microneedles, dielectrophoresis, electromagnetic devices, and microfluidic chips), manipulation types (e.g., microinjection, transportation, rotation fusion, adhesion, separation, etc.), and potential medical applications (e.g., micro-surgery, biopsy, gene editing, cancer treatment, cell-cell interactions, etc.). The technology involves different fields such as robotics, automation, imaging, microfluidics, mechanics, materials, biology and medical sciences. The book provides systematic knowledge on the subject, covering a wide range of basic concepts, theories, methodology, experiments, case studies and potential medical applications. It will enable readers to promptly conduct a systematic review of research and become an essential reference for many new and experienced researchers entering this unique field. Introduces the applications of robot-assisted manipulation tools in various cell manipulation tasks Defines many essential concepts in association with the robotic cell manipulation field, including manipulation strategy and manipulation types Introduces basic concepts and knowledge on various manipulation devices and tasks Describes some cutting-edge cell manipulation technologies and case studies

Book Light Driven Micromachines

Download or read book Light Driven Micromachines written by George K. Knopf and published by CRC Press. This book was released on 2018-03-29 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Light Driven Micromachines, the fundamental principles and unique characteristics of light driven material structures, simple mechanisms and integrated machines are explored. Very small light driven systems provide a number of interesting features and unique design opportunities because streams of photons deliver energy into the system and provide the control signal used to regulate the response of the micron sized device. Through innovative material design and clever component fabrication, these optically powered tiny machines can be created to perform mechanical work when exposed to varying light intensity, wavelength, phase, and/or polarization. The book begins with the scientific background necessary to understand the nature of light and how light can initiate physical movement by inducing material deformation or altering the surrounding environment to impose micro-forces on the actuating mechanisms. The impact of physical size on the performance of light driven mechanisms and machines is discussed, and the nature of light–material interactions is reviewed. These interactions enable very small objects and mechanical components to be trapped and manipulated by a focused light beam, or produce local temperature gradients that force certain materials to undergo shape transformation. Advanced phase transition gels, polymers, carbon-based films and piezoelectric ceramics that exhibit direct light-to-mechanical energy conversion are examined from the perspective of designing optically driven actuators and mechanical systems. The ability of light to create photothermal effects that drive microfluidic processes and initiate the phase transformation of temperature sensitive shape memory materials are also explored in the book. This compendium seeks to inspire the next generation of scientists and engineers by presenting the fundamental principles of this emerging interdisciplinary technology and exploring how the properties of light can be exploited for microfluidic, microrobotic, biomedical and space applications.

Book Optofluidics 2015

Download or read book Optofluidics 2015 written by Shih-Kang Fan and published by MDPI. This book was released on 2018-07-04 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Optofluidics 2015" that was published in Micromachines

Book Cell Analysis on Microfluidics

Download or read book Cell Analysis on Microfluidics written by Jin-Ming Lin and published by Springer. This book was released on 2017-10-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis

Download or read book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis written by Lawrence Kwan Yeung Hui and published by . This book was released on 2008 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, interest in microfluidics has surged as applications have trended towards novel biological assays. Specifically, the ability of microfluidics to parallelize cellular studies through array-based chip designs has attracted researchers interested in investigating cellular function under a wide variety of environmental conditions. The capability of microfluidic devices to control microenvironment conditions and induce dynamic perturbation to cellular systems makes microfluidics (or "lab-on-a-chip") an attractive platform to study gene expression dynamics. In this project, the functionality of microfluidic technology is exploited to design and construct a device for isolation and observation of cells in high throughput. The integration of a concentration gradient with homogenous medium within each chamber was designed specifically to investigate gene regulation in Saccharomyces cerevisiae under various concentrations of chemical inducers. These devices were designed to sustain cells for extended periods of time with high temporal resolution to study dynamic gene expression in single cells. The device builds on previous studies by probing up to eight distinct cell cultures in parallel. The microfluidic platform was then used to study yeast cells at various levels of inducer perturbations. Further experimentation revealed the utility of a parallel gradient by producing an induction curve of the yeast response. Such high-throughput designs will prove essential to yeast systems biology research as it strives to understand the complex regulatory interactions that dictate cell function by probing vast regions of parameter space.

Book Microfluidic Methods for Molecular Biology

Download or read book Microfluidic Methods for Molecular Biology written by Chang Lu and published by Springer. This book was released on 2016-05-14 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-the-art research on molecular biology assays and molecular techniques enabled or enhanced by microfluidic platforms. Topics covered include microfluidic methods for cellular separations and single cell studies, droplet-based approaches to study protein expression and forensics, and microfluidic in situ hybridization for RNA analysis. Key molecular biology studies using model organisms are reviewed in detail. This is an ideal book for students and researchers in the microfluidics and molecular biology fields as well as engineers working in the biotechnology industry. This book also: Reviews exhaustively the latest techniques for single-cell genetic, epigenetic, metabolomic, and proteomic analysis Illustrates microfluidic approaches for inverse metabolic engineering, as well as analysis of circulating exosomes Broadens readers’ understanding of microfluidics convection-based PCR technology, microfluidic RNA-seq, and microfluidics for robust mobile diagnostics

Book Droplet Microfluidics

    Book Details:
  • Author : Eric Brouzes
  • Publisher : MDPI
  • Release : 2021-05-06
  • ISBN : 3036501843
  • Pages : 114 pages

Download or read book Droplet Microfluidics written by Eric Brouzes and published by MDPI. This book was released on 2021-05-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Droplet microfluidics has dramatically developed in the past decade and has been established as a microfluidic technology that can translate into commercial products. Its rapid development and adoption have relied not only on an efficient stabilizing system (oil and surfactant), but also on a library of modules that can manipulate droplets at a high-throughput. Droplet microfluidics is a vibrant field that keeps evolving, with advances that span technology development and applications. Recent examples include innovative methods to generate droplets, to perform single-cell encapsulation, magnetic extraction, or sorting at an even higher throughput. The trend consists of improving parameters such as robustness, throughput, or ease of use. These developments rely on a firm understanding of the physics and chemistry involved in hydrodynamic flow at a small scale. Finally, droplet microfluidics has played a pivotal role in biological applications, such as single-cell genomics or high-throughput microbial screening, and chemical applications. This Special Issue will showcase all aspects of the exciting field of droplet microfluidics, including, but not limited to, technology development, applications, and open-source systems.