EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Splitting Methods for Partial Differential Equations with Rough Solutions

Download or read book Splitting Methods for Partial Differential Equations with Rough Solutions written by Helge Holden and published by European Mathematical Society. This book was released on 2010 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Book Splitting Methods in Communication  Imaging  Science  and Engineering

Download or read book Splitting Methods in Communication Imaging Science and Engineering written by Roland Glowinski and published by Springer. This book was released on 2017-01-05 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.

Book Parallel Solution of Partial Differential Equations

Download or read book Parallel Solution of Partial Differential Equations written by Petter Bjorstad and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020 1

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020 1 written by Jens M. Melenk and published by Springer Nature. This book was released on 2023-06-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Proceedings of Sixth International Congress on Information and Communication Technology

Download or read book Proceedings of Sixth International Congress on Information and Communication Technology written by Xin-She Yang and published by Springer Nature. This book was released on 2021-09-23 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-quality research papers presented at the Sixth International Congress on Information and Communication Technology, held at Brunel University, London, on February 25–26, 2021. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of things (IoT) and e-mining. Written by respected experts and researchers working on ICT, the book offers a valuable asset for young researchers involved in advanced studies. The book is presented in four volumes.

Book Galerkin Finite Element Methods for Parabolic Problems

Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Book Multicomponent and Multiscale Systems

Download or read book Multicomponent and Multiscale Systems written by Juergen Geiser and published by Springer. This book was released on 2015-08-21 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.

Book Numerical Solution of Partial Differential Equations  Theory  Algorithms  and Their Applications

Download or read book Numerical Solution of Partial Differential Equations Theory Algorithms and Their Applications written by Oleg P. Iliev and published by Springer Science & Business Media. This book was released on 2013-06-04 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the current main challenges in the area of scientific computing​ is the design and implementation of accurate numerical models for complex physical systems which are described by time dependent coupled systems of nonlinear PDEs. This volume integrates the works of experts in computational mathematics and its applications, with a focus on modern algorithms which are at the heart of accurate modeling: adaptive finite element methods, conservative finite difference methods and finite volume methods, and multilevel solution techniques. Fundamental theoretical results are revisited in survey articles and new techniques in numerical analysis are introduced. Applications showcasing the efficiency, reliability and robustness of the algorithms in porous media, structural mechanics and electromagnetism are presented. Researchers and graduate students in numerical analysis and numerical solutions of PDEs and their scientific computing applications will find this book useful.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Group Explicit Methods for the Numerical Solution of Partial Differential Equations

Download or read book Group Explicit Methods for the Numerical Solution of Partial Differential Equations written by David J. Evans and published by CRC Press. This book was released on 1997-05-22 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new class of methods, termed "group explicit methods," is introduced in this text. Their applications to solve parabolic, hyperbolic and elliptic equations are outlined, and the advantages for their implementation on parallel computers clearly portrayed. Also included are the introductory and fundamental concepts from which the new methods are derived, and on which they are dependent. With the increasing advent of parallel computing into all aspects of computational mathematics, there is no doubt that the new methods will be widely used.

Book Numerical Solution of Partial Differential Equations

Download or read book Numerical Solution of Partial Differential Equations written by K. W. Morton and published by Cambridge University Press. This book was released on 2005-04-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

Book Richardson Extrapolation

    Book Details:
  • Author : Zahari Zlatev
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2017-11-07
  • ISBN : 3110533006
  • Pages : 310 pages

Download or read book Richardson Extrapolation written by Zahari Zlatev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-11-07 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions

Book Analytic Methods for Partial Differential Equations

Download or read book Analytic Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Book Wave Propagation in Materials for Modern Applications

Download or read book Wave Propagation in Materials for Modern Applications written by Andrey Petrin and published by BoD – Books on Demand. This book was released on 2010-01-01 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent decades, there has been a growing interest in micro- and nanotechnology. The advances in nanotechnology give rise to new applications and new types of materials with unique electromagnetic and mechanical properties. This book is devoted to the modern methods in electrodynamics and acoustics, which have been developed to describe wave propagation in these modern materials and nanodevices. The book consists of original works of leading scientists in the field of wave propagation who produced new theoretical and experimental methods in the research field and obtained new and important results. The first part of the book consists of chapters with general mathematical methods and approaches to the problem of wave propagation. A special attention is attracted to the advanced numerical methods fruitfully applied in the field of wave propagation. The second part of the book is devoted to the problems of wave propagation in newly developed metamaterials, micro- and nanostructures and porous media. In this part the interested reader will find important and fundamental results on electromagnetic wave propagation in media with negative refraction index and electromagnetic imaging in devices based on the materials. The third part of the book is devoted to the problems of wave propagation in elastic and piezoelectric media. In the fourth part, the works on the problems of wave propagation in plasma are collected. The fifth, sixth and seventh parts are devoted to the problems of wave propagation in media with chemical reactions, in nonlinear and disperse media, respectively. And finally, in the eighth part of the book some experimental methods in wave propagations are considered. It is necessary to emphasize that this book is not a textbook. It is important that the results combined in it are taken “from the desks of researchers“. Therefore, I am sure that in this book the interested and actively working readers (scientists, engineers and students) will find many interesting results and new ideas.