EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Higher Order Dynamic Mode Decomposition and Its Applications

Download or read book Higher Order Dynamic Mode Decomposition and Its Applications written by Jose Manuel Vega and published by Academic Press. This book was released on 2020-09-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space. Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results. Includes instructions for the implementation of the HODMD, MATLAB codes, and extended discussions of the algorithm Includes descriptions of other order reduction techniques, and compares their strengths and weaknesses Provides examples of applications involving complex flow fields, in contexts including aerospace engineering, geophysical flows, and wind turbine design

Book Higher Order Dynamic Mode Decomposition and Its Applications

Download or read book Higher Order Dynamic Mode Decomposition and Its Applications written by Jose Manuel Vega and published by Academic Press. This book was released on 2020-10-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space. Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results. Includes instructions for the implementation of the HODMD, MATLAB codes, and extended discussions of the algorithm Includes descriptions of other order reduction techniques, and compares their strengths and weaknesses Provides examples of applications involving complex flow fields, in contexts including aerospace engineering, geophysical flows, and wind turbine design

Book Dynamic Mode Decomposition

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book Dynamic Mode Decomposition

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Book Turbulence  Coherent Structures  Dynamical Systems and Symmetry

Download or read book Turbulence Coherent Structures Dynamical Systems and Symmetry written by Philip Holmes and published by Cambridge University Press. This book was released on 2012-02-23 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Book Applications in Ubiquitous Computing

Download or read book Applications in Ubiquitous Computing written by Raman Kumar and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a deep dive into ubiquitous computing for applications in health, business, education, tourism, and transportation. The rich interdisciplinary contents of the book appeal to readers from diverse disciplines who aspire to create new and innovative research initiatives and applications in ubiquitous computing. Topics include condition monitoring and diagnostics; multi-objective optimization in design, multi-objective optimization of machining parameters, and more. The book benefits researchers, advanced students, as well as practitioners interested in applications of ubiquitous computing. Features practical, tested applications in ubiquitous computing Includes applications such as health, business, education, electronics, tourism, and transportation Applicable to researchers, academics, students, and professionals.

Book Hilbert   Huang Transform and Its Applications

Download or read book Hilbert Huang Transform and Its Applications written by Norden E Huang and published by World Scientific. This book was released on 2014-04-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for scientists and engineers who use HHT (Hilbert–Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and various application examples, ranging from the correction of satellite orbit drifting to detection of failure of highway bridges. The thirteen chapters of the first edition are based on the presentations made at a mini-symposium at the Society for Industrial and Applied Mathematics in 2003. Some outstanding mathematical research problems regarding HHT development are discussed in the first three chapters. The three new chapters of the second edition reflect the latest HHT development, including ensemble empirical mode decomposition (EEMD) and modified EMD. The book also provides a platform for researchers to develop the HHT method further and to identify more applications. Contents:Introduction to the Hilbert–Huang Transform and Its Related Mathematical ProblemsEnsemble Empirical Mode Decomposition and Its Multi-Dimensional ExtensionsMultivariate Extensions of Empirical Mode DecompositionB-Spline Based Empirical Mode DecompositionEMD Equivalent Filter Banks, From Interpretation to ApplicationsHHT Sifting and FilteringStatistical Significance Test of Intrinsic Mode FunctionsThe Time-Dependent Intrinsic CorrelationThe Application of Hilbert–Huang Transforms to Meteorological DatasetsEmpirical Mode Decomposition and Climate VariabilityEMD Correction of Orbital Drift Artifacts in Satellite Data StreamHHT Analysis of the Nonlinear and Non-Stationary Annual Cycle of Daily Surface Air Temperature DataHilbert Spectra of Nonlinear Ocean WavesEMD and Instantaneous Phase Detection of Structural DamageHTT-Based Bridge Structural Health-Monitoring MethodApplications of HHT in Image Analysis Readership: Applied mathematicians, climate scientists, highway engineers, medical scientists, geologists, civil engineers, mechanical engineers, electrical engineers, economics and graduate students in science or engineering. Keywords:Hilbert–Huang Transform;Empirical Mode Decomposition;Intrinsic Mode Function;Hilbert Spectral Analysis;Time-Frequency AnalysisKey Features:A tool book for analyzing nonlinear and non-stationary dataA source book for HHT development and applicationsThe most complete reference for HHT method and applications

Book The Koopman Operator in Systems and Control

Download or read book The Koopman Operator in Systems and Control written by Alexandre Mauroy and published by Springer Nature. This book was released on 2020-02-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

Book Stability and Transition in Shear Flows

Download or read book Stability and Transition in Shear Flows written by Peter J. Schmid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Book Data Driven Modeling   Scientific Computation

Download or read book Data Driven Modeling Scientific Computation written by J. Nathan Kutz and published by Oxford University Press. This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Book The Finite Volume Method in Computational Fluid Dynamics

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Book Nonlinear Dynamics and Chaos

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Book Forecasting  principles and practice

Download or read book Forecasting principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Book The Proceedings of the 2018 Asia Pacific International Symposium on Aerospace Technology  APISAT 2018

Download or read book The Proceedings of the 2018 Asia Pacific International Symposium on Aerospace Technology APISAT 2018 written by Xinguo Zhang and published by Springer. This book was released on 2019-06-08 with total page 3068 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.

Book Stochastic Tools in Turbulence

Download or read book Stochastic Tools in Turbulence written by John L. Lumley and published by Courier Corporation. This book was released on 2007-01-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.

Book Numerical Methods for Fluid Dynamics

Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean