EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometry V

    Book Details:
  • Author : Robert Osserman
  • Publisher : Springer Science & Business Media
  • Release : 1997-10-09
  • ISBN : 9783540605232
  • Pages : 300 pages

Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 1997-10-09 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.

Book Complete Minimal Surfaces of Finite Total Curvature

Download or read book Complete Minimal Surfaces of Finite Total Curvature written by Kichoon Yang and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur faces. This philosophy is first indicated in the fundamental theorem of Chern and Osserman: A complete minimal surface M immersed in R3 is of finite total curvature if and only if M with its induced conformal structure is conformally equivalent to a compact Riemann surface Mg punctured at a finite set E of points and the tangential Gauss map extends to a holomorphic map Mg _ P2. Thus a finite total curvature complete minimal surface in R3 gives rise to a plane algebraic curve. Let Mg denote a fixed but otherwise arbitrary compact Riemann surface of genus g. A positive integer r is called a puncture number for Mg if Mg can be conformally immersed into R3 as a complete finite total curvature minimal surface with exactly r punctures; the set of all puncture numbers for Mg is denoted by P (M ). For example, Jorge and Meeks [JM] showed, by constructing an example g for each r, that every positive integer r is a puncture number for the Riemann surface pl.

Book A Course in Minimal Surfaces

Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

Book Handbook of Differential Geometry  Volume 1

Download or read book Handbook of Differential Geometry Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

Book Geometry V

    Book Details:
  • Author : Robert Osserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 3662034840
  • Pages : 279 pages

Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.

Book Differential Geometry Of Submanifolds And Its Related Topics   Proceedings Of The International Workshop In Honor Of S Maeda s 60th Birthday

Download or read book Differential Geometry Of Submanifolds And Its Related Topics Proceedings Of The International Workshop In Honor Of S Maeda s 60th Birthday written by Sadahiro Maeda and published by World Scientific. This book was released on 2013-10-23 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a compilation of papers presented at the conference on differential geometry, in particular, minimal surfaces, real hypersurfaces of a non-flat complex space form, submanifolds of symmetric spaces and curve theory. It also contains new results or brief surveys in these areas. This volume provides fundamental knowledge to readers (such as differential geometers) who are interested in the theory of real hypersurfaces in a non-flat complex space form.

Book Surfaces with Constant Mean Curvature

Download or read book Surfaces with Constant Mean Curvature written by Katsuei Kenmotsu and published by American Mathematical Soc.. This book was released on 2003 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.

Book The Global Theory of Minimal Surfaces in Flat Spaces

Download or read book The Global Theory of Minimal Surfaces in Flat Spaces written by W.H. III Meeks and published by Springer. This book was released on 2004-10-11 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

Book Elements of the geometry and topology of minimal surfaces in three dimensional space

Download or read book Elements of the geometry and topology of minimal surfaces in three dimensional space written by A. T. Fomenko and published by American Mathematical Soc.. This book was released on 2005 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of lectures presented to students of mathematics, physics, and mechanics by A. T. Fomenko at Moscow University, under the auspices of the Moscow Mathematical Society. The book describes modern and visual aspects of the theory of minimal, two-dimensional surfaces in three-dimensional space. The main topics covered are: topological properties of minimal surfaces, stable and unstable minimal films, classical examples, the Morse-Smale index of minimal two-surfaces in Euclidean space, and minimal films in Lobachevskian space. Requiring only a standard first-year calculus and elementary notions of geometry, this book brings the reader rapidly into this fascinating branch of modern geometry.

Book Discrete Differential Geometry

Download or read book Discrete Differential Geometry written by Alexander I. Bobenko and published by American Mathematical Society. This book was released on 2023-09-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.

Book Minimal Surfaces from a Complex Analytic Viewpoint

Download or read book Minimal Surfaces from a Complex Analytic Viewpoint written by Antonio Alarcón and published by Springer Nature. This book was released on 2021-03-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.

Book A Survey on Classical Minimal Surface Theory

Download or read book A Survey on Classical Minimal Surface Theory written by William Meeks and published by American Mathematical Soc.. This book was released on 2012 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meeks and Pérez extend their 2011 survey article "The classical theory of Minimal surfaces" in the Bulletin of the American Mathematical Society to include other recent research results. Their topics include minimal surfaces with finite topology and more than one end, limits of embedded minimal surfaces without local area or curvature bounds, conformal structure of minimal surfaces, embedded minimal surfaces of finite genus, topological aspects of minimal surfaces, and Calabi-Yau problems. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).

Book Global Analysis of Minimal Surfaces

Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.

Book Geometric Analysis

    Book Details:
  • Author : Joaqu’n PŽrez
  • Publisher : American Mathematical Soc.
  • Release : 2012-07-16
  • ISBN : 0821849921
  • Pages : 198 pages

Download or read book Geometric Analysis written by Joaqu’n PŽrez and published by American Mathematical Soc.. This book was released on 2012-07-16 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains research and expository articles from the courses and talks given at the RSME Lluis A. Santalo Summer School, ``Geometric Analysis'', held June 28-July 2, 2010, in Granada, Spain. The goal of the Summer School was to present some of the many advances currently taking place in the interaction between partial differential equations and differential geometry, with special emphasis on the theory of minimal surfaces. This volume includes expository articles about the current state of specific problems involving curvature and partial differential equations, with interactions to neighboring fields such as probability. An introductory, mostly self-contained course on constant mean curvature surfaces in Lie groups equipped with a left invariant metric is provided. The volume will be of interest to researchers, post-docs, and advanced PhD students in the interface between partial differential equations and differential geometry.

Book Geometry And Topology Of Submanifolds  Iii  Proceedings Of The Leeds Differential Geometry Workshop 1990

Download or read book Geometry And Topology Of Submanifolds Iii Proceedings Of The Leeds Differential Geometry Workshop 1990 written by Alan West and published by World Scientific. This book was released on 1991-04-22 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This workshop collected together works by experts working in various aspects of the differential geometry of submanifold and discussed recent advances and unsolved problems. Two important linking lectures were on the work done by Thorbergsson and others on classifying isoparametric submanifolds of Euclidean spaces and the generalisation of these to Hilbert spaces due to Terng and others. Isoparametric submanifolds provides examples of minimal, taut submanifolds, of harmonic maps and submanifolds with parallel second fundamental form-all topics discussed at this workshop. There were also lectures on the rapidly developing topic of the affine geometry of hypersurfaces and on applications. Amomg the applications discussed are new methods for using PDE's for generating surfaces with special shapes for use in engineering design.

Book Geometry And Topology Of Submanifolds Ii

Download or read book Geometry And Topology Of Submanifolds Ii written by Boyom M and published by #N/A. This book was released on 1990-05-01 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1770 pages. Available in PDF, EPUB and Kindle. Book excerpt: