EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book HIGH TEMPERATURE DEFORMATION AND FRACTURE BE HAVIOR OF METALS UNDER HIGH STRAIN RATE CONDITIONS

Download or read book HIGH TEMPERATURE DEFORMATION AND FRACTURE BE HAVIOR OF METALS UNDER HIGH STRAIN RATE CONDITIONS written by and published by . This book was released on 1963 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the present investigation is to evaluate the high temperature deformation and fracture behavior of the following materials under high strain rate conditions: Udimet 500, Wand Be. The strain rate dependance of the ductility as demonstrated with Udimet 700 has been found with several multi-phase materials. On the other hand, homogeneous single phase metals showed rather a continuous increase of the ductility with increasing strain rate.

Book Fundamentals of Creep in Metals and Alloys

Download or read book Fundamentals of Creep in Metals and Alloys written by Michael E. Kassner and published by Elsevier. This book was released on 2004-04-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion

Book Metallurgical Effects at High Strain Rates

Download or read book Metallurgical Effects at High Strain Rates written by R. Rohde and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: A conference on Metallurgical Effects at High Strain Rates was held at Albuquerque, New Mexico, February 5 through 8, 1973, under joint sponsorship of Sandia Laboratories and the Physical Metallurgy Committee of The Metallurgical Society of AIME. This book presents the written proceedings of the meeting. The purpose of the conference was to gather scientists from diverse disciplines and stimulate interdisciplinary discussions on key areas of materials response at high strain rates. In this spirit, it was similar to one of the first highly successful con ferences on this subject held in 1960, in Estes Park, Colorado, on The Response of Metals to High Velocity Deformation. The 1973 conference was able to demonstrate rather directly the increased understanding of high strain rate effects in metals that has evolved over a period of roughly 12 years. In keeping with the interdisciplinary nature of the meeting, the first day was devoted to a tutorial session of invited papers to provide attendees of diverse backgrounds with a common basis of understanding. Sessions were then held with themes centered around key areas of the high strain rate behavior of metals.

Book Aluminum Lithium Alloys

Download or read book Aluminum Lithium Alloys written by N Eswara Prasad and published by Butterworth-Heinemann. This book was released on 2013-09-20 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because lithium is the least dense elemental metal, materials scientists and engineers have been working for decades to develop a commercially viable aluminum-lithium (Al-Li) alloy that would be even lighter and stiffer than other aluminum alloys. The first two generations of Al-Li alloys tended to suffer from several problems, including poor ductility and fracture toughness; unreliable properties, fatigue and fracture resistance; and unreliable corrosion resistance. Now, new third generation Al-Li alloys with significantly reduced lithium content and other improvements are promising a revival for Al-Li applications in modern aircraft and aerospace vehicles. Over the last few years, these newer Al-Li alloys have attracted increasing global interest for widespread applications in the aerospace industry largely because of soaring fuel costs and the development of a new generation of civil and military aircraft. This contributed book, featuring many of the top researchers in the field, is the first up-to-date international reference for Al-Li material research, alloy development, structural design and aerospace systems engineering. - Provides a complete treatment of the new generation of low-density AL-Li alloys, including microstructure, mechanical behavoir, processing and applications - Covers the history of earlier generation AL-Li alloys, their basic problems, why they were never widely used, and why the new third generation Al-Li alloys could eventually replace not only traditional aluminum alloys but more expensive composite materials - Contains two full chapters devoted to applications in the aircraft and aerospace fields, where the lighter, stronger Al-Li alloys mean better performing, more fuel-efficient aircraft

Book Deformation and Fracture as a Function of Strain Rate at Hot Working Temperatures

Download or read book Deformation and Fracture as a Function of Strain Rate at Hot Working Temperatures written by Nicholas J. Grant and published by . This book was released on 1967 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intent of this program, originally, was to determine the role of strain rate and temperature on the hot plasticity of several classes of metals and alloys. The strain rates were comparable to those encountered in usual hot working operations, including extrusion; they varied from about 0.001 to 100 per second. It was also an intent of this program to study the deformation and fracture mechanisms which prevailed in such high strain rate tests. Both cast and wrought structures were of interest to our studies since the great bulk of all metals and alloys utilized in this world usually start as cast ingot structures. Further, the selection of materials for test was such that both single-phase and multi-phase alloys would be included, the multi-phase alloys involving both soft and hard second phases. In the course of these studies, when it became obvious that relatively low values of ductility were being obtained under the optimum conditions of strain rate and temperature, even for pure metals, means were sought to enhance the hot plasticity. One of the evident limitations of cast structures was the very coarse grain size, from 2 to 20 mm diameter; a second shortcoming was the rapid increase in grain size of the more ductile wrought materials when heating to the high test temperatures.

Book Creep and High Temperature Deformation of Metals and Alloys

Download or read book Creep and High Temperature Deformation of Metals and Alloys written by Stefano Spigarelli and published by MDPI. This book was released on 2019-12-12 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.

Book Shock Waves and High Strain Rate Phenomena in Metals

Download or read book Shock Waves and High Strain Rate Phenomena in Metals written by Mare Meyers and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1084 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific understanding of high-velocity deformation has advanced substantially during the past decade. On the one hand, the framework for a theory explaining the metallurgical effects of shock waves is beginning to take shape; on the other hand, the technological applications of high strain-rate processes have found their way into industries in countries around the world. Ex plosive cladding, welding, forming, compaction and consolidation, cutting, and hardening, in addition to high energy-rate deformation processes using other energy sources, are some of the topics of contemporary technological importance. Metallurgical effects are of the utmost importance in both the scientific understanding of the phenomena involved, and in the successful development and utilization of the associated applications. The international conference upon which this book is based had as its major objectives the acceleration of progress in the field of high-strain rate deformation and fabrication, including applications, by providing a forum for the exchange of state-of-the art information on the metallurgical effects of high strain-rate deformation and fabrication; and the organization of this informa tion into a timely and coherent body of knowledge focused around significant areas and applications. This volume is a manifestation of these objectives. In addition, the contents of this book were organized to provide for a somewhat logical perspective of the fundamentals, development, and state-of-the-art applications of high strain-rate and shock phenomena.

Book Fracture at High Temperatures

Download or read book Fracture at High Temperatures written by Hermann Riedel and published by Springer. This book was released on 2014-01-13 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fatigue and Durability of Metals at High Temperatures

Download or read book Fatigue and Durability of Metals at High Temperatures written by S. S. Manson and published by ASM International. This book was released on 2009 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: From concept to application, this book describes the method of strain-range partitioning for analyzing time-dependent fatigue. Creep (time-dependent) deformation is first introduced for monotonic and cyclic loading. Multiple chapters then discuss strain-range partitioning in details for multi-axial loading conditions and how different loading permutations can lead to different micro-mechanistic effects. Notably, the total-strain method of strain-range partitioning (SRP) is described, which is a methodology that sees use in several industries. Examples from aerospace illustrate applications, and methods for predicting time-dependent metal fatigue are critiqued.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Strain Rate and Temperature on Fracture and Damage of Magnesium Alloy AZ31B

Download or read book Effect of Strain Rate and Temperature on Fracture and Damage of Magnesium Alloy AZ31B written by Ana Karina Rodriguez Atencio and published by . This book was released on 2015 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their low density and high specific strength, magnesium and its alloys are structural metals attractive for the aerospace and automotive industries. However, wide spread use of wrought magnesium is challenged by its limited formability at low temperature compared to aluminum and steel. This results in costly production and processing of sheet and plate material. Extensive research has been carried out on deformation mechanisms, mechanical characterization, new processing routes and alloying systems in order to overcome these limitations. However, the available literature on damage and fracture is limited. In particular, the effects of temperature and strain rate on damage and fracture remain unexplored. The purpose of this study is to investigate this effects on damage accumulation to fracture in a magnesium alloy. Twin roll cast magnesium plates of AZ31B were used to that end. An extensive experimental campaign of tensile tests at various strain rates and temperatures was performed with this aim. In addition, a series of interrupted tests were carried out to investigate the microscopic damage mechanisms by means of optical and scanning electron microscopy. The materials were found to have a positive strain rate sensitivity and showed thermal softening. Microstructural studies revealed an increased propensity to form deformation twinning at higher strain rates and lower temperatures, as expected. The fracture behavior was characterized in terms of the work to fracture (Wf). Wf exhibited a maximum at some strain rate dependent on temperature. Conversely, at a fixed strain rate, Wf showed a maximum at a temperature dependent on strain rate. To understand these trends, microscopy analysis was carried out on selected conditions. Under all the conditions examined, two main damage sites were identified: second phase particles and twinning. However, the propensity for twin-sized cracks was highest under conditions where the density of twinning was lowest. Different scenarios are explored in order to rationalize this behavior. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155147

Book Metal Plasticity and Fatigue at High Temperature

Download or read book Metal Plasticity and Fatigue at High Temperature written by Denis Benasciutti and published by MDPI. This book was released on 2020-05-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

Book High Temperature Deformation and Fracture of Materials

Download or read book High Temperature Deformation and Fracture of Materials written by Jun-Shan Zhang and published by Elsevier. This book was released on 2010-09-01 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. - Analyses creep behaviour of materials, the evolution of dislocation substructures during creep, dislocation motion at elevated temperatures and importantly, recovery-creep theories of pure metals - Examines high temperature fracture, including nucleation of creep cavity, diffusional growth and constrained growth of creep cavities - A valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life

Book Testing of the Plastic Deformation of Metals

Download or read book Testing of the Plastic Deformation of Metals written by T. W. Clyne and published by Cambridge University Press. This book was released on 2021-06-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a novel approach to the subject, providing detailed information about established and innovative mechanical testing procedures.