EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Speed Semiconductor Physics  Theoretical Approaches and Device Physics

Download or read book High Speed Semiconductor Physics Theoretical Approaches and Device Physics written by Cliff Orori Mosiori and published by Anchor Academic Publishing (aap_verlag). This book was released on 2015-05-26 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid state physics is a fascinating sub-genre of condensed matter physics - though some graduate students consider it a very boring and tedious subject area in Physics and others even call it a “squalid state”. Topics covered in this book are built on standard solid state physics references available in most online libraries or in other books on solid state physics. The complexity of high speed semiconductor physics and related devices arose from condensed solid state matter. The content covered in this book gives a deep coverage on some topics or sections that may be covered only superficially in other literature. Therefore, these topics are likely to differ a great deal from what is deemed important elsewhere in other books or available literature. There are many extremely good books on solid-state physics and condensed matter physics but very few of these books are restricted to high speed semiconductor physic though. Chapter one covers the general semiconductor qualities that make high speed semiconductor devices effect and includes the theory of crystals, diffusion and ist mechanisms, while chapter two covers solid state materials, material processing for high speed semiconductor devices and an introduction to quantum theory for materials in relation to density of states of the radiation for a black body and ist radiation properties. Chapter three discuss high speed semiconductor energy band theory, energy bands in general solid semiconductor materials, the Debye model, the Einstein model the Debye model and semiconductor transport carriers in 3D semiconductors while chapter four discuss effect of external force on current flow based on the concept of holes valence band, and lattice scattering in high speed devices. Chapter five briefly describes solid state thermoelectric fundamentals, thermoelectric material and thermoelectric theory of solids in lattice and phonons while chapter six scattering in high field effect in semiconductors in inter-valley electron scattering and the associated Fermi Dirac statistics and Maxwell-Boltzmann approximation on their carrier concentration variation with energy in extrinsic doping chapter seven covers p-n junction diodes, varactor diode, pin diode Schottky diode and their transient response of diode in multi-valley semiconductors. Chapter eight discusses high speed metal semiconductor field effect transistors.

Book Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Download or read book Introductory Semiconductor Device Physics for Chip Design and Manufacturing written by Robert W. Keyes and published by Wiley. This book was released on 2017-12-26 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the fundamentals of semiconductor physics and engineering This book discusses fundamental semiconductor physics of devices and on-chip interconnections for physicists and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies. Introductory Semiconductor Device Physics for Chip Design and Manufacturing: Provides physical descriptions and illustrations with data visualizations to facilitate intuitive understanding of semiconductor physics, devices and on-chip interconnections Blends theoretical physics treatment with engineering applications and real case studies for manufactured chips Presents complementary-metal-oxide-semiconductor (CMOS) transistors in high-performance server microprocessors with static CMOS combinational digital circuit design examples Offers a rich array of student problem sets, mid-term exams, and final exams with a glossary at the end of the book M. Y. Lanzerotti, PhD, has over 15 years of engineering experience in designing integrated circuits for high-performance server chips and aerospace applications. Dr. Lanzerotti is Assistant Professor of Physics at Augsburg College and previously held positions as Associate Professor of Computer Engineering at Air Force Institute of Technology, Instructor at Harvard Summer School, Visiting Faculty Fellow at Pacific Lutheran University, Visiting Faculty Fellow at Sapienza University of Rome, and Research Staff Member at IBM Thomas J. Watson Research Center. This book is inspired from Dr. Lanzerotti’s course, “Introductory Semiconductor Device Physics for Chip Design and Manufacturing,” at Harvard Summer School. Dr. Lanzerotti holds physics degrees from Harvard College, the University of Cambridge, and Cornell University. Dr. Lanzerotti holds four U.S. patents, was awarded an IEEE Technical Innovation Award in 2007 and an IBM Outstanding Research Contribution Award in 1998, and was Editor-in-Chief of the IEEE Solid-State Circuits Society Magazine.

Book Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Download or read book Introductory Semiconductor Device Physics for Chip Design and Manufacturing written by Robert W. Keyes and published by Wiley. This book was released on 2018-01-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the fundamentals of semiconductor physics and engineering This book discusses fundamental semiconductor physics of devices and on-chip interconnections for physicists and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies. Introductory Semiconductor Device Physics for Chip Design and Manufacturing: Provides physical descriptions and illustrations with data visualizations to facilitate intuitive understanding of semiconductor physics, devices and on-chip interconnections Blends theoretical physics treatment with engineering applications and real case studies for manufactured chips Presents complementary-metal-oxide-semiconductor (CMOS) transistors in high-performance server microprocessors with static CMOS combinational digital circuit design examples Offers a rich array of student problem sets, mid-term exams, and final exams with a glossary at the end of the book M. Y. Lanzerotti, PhD, has over 15 years of engineering experience in designing integrated circuits for high-performance server chips and aerospace applications. Dr. Lanzerotti is Assistant Professor of Physics at Augsburg College and previously held positions as Associate Professor of Computer Engineering at Air Force Institute of Technology, Instructor at Harvard Summer School, Visiting Faculty Fellow at Pacific Lutheran University, Visiting Faculty Fellow at Sapienza University of Rome, and Research Staff Member at IBM Thomas J. Watson Research Center. This book is inspired from Dr. Lanzerotti’s course, “Introductory Semiconductor Device Physics for Chip Design and Manufacturing,” at Harvard Summer School. Dr. Lanzerotti holds physics degrees from Harvard College, the University of Cambridge, and Cornell University. Dr. Lanzerotti holds four U.S. patents, was awarded an IEEE Technical Innovation Award in 2007 and an IBM Outstanding Research Contribution Award in 1998, and was Editor-in-Chief of the IEEE Solid-State Circuits Society Magazine.

Book Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Download or read book Introductory Semiconductor Device Physics for Chip Design and Manufacturing written by Mary Lanzerotti and published by Springer. This book was released on 2020-08-15 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook book discusses fundamental semiconductor physics of devices and on-chip interconnections and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies.

Book Modern Semiconductor Physics and Device Applications

Download or read book Modern Semiconductor Physics and Device Applications written by Vitalii K Dugaev and published by CRC Press. This book was released on 2021-11-15 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Book Modern Semiconductor Physics and Device Applications

Download or read book Modern Semiconductor Physics and Device Applications written by Vitalii K Dugaev and published by CRC Press. This book was released on 2021-11-22 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Book Selected Semiconductor Research

Download or read book Selected Semiconductor Research written by Ming-Fu Li and published by World Scientific. This book was released on 2011 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on solid state physics has been written with an emphasis on recent developments in quantum many-body physics approaches. It starts by covering the classical theory of solids and electrons and describes how this classical model has failed. The authors then present the quantum mechanical model of electrons in a lattice and they also discuss the theory of conductivity. Extensive reviews on the topic are provided in a compact manner so that any non-specialist can follow from the beginning.The authors cover the system of magnetism in a similar way and various problems in magnetic materials are discussed. The book also discusses the Ising chain, the Heisenberg model, the Kondo effect and superconductivity, amongst other relevant topics.In the final chapter, the authors present some works related to contemporary research topics, such as quantum entanglement in many-body systems and quantum simulations. They also include a short review of some of the possible applications of solid state quantum information in biological systems.

Book Semiconductor Physics

    Book Details:
  • Author : Sandip Tiwari
  • Publisher : Oxford University Press, USA
  • Release : 2020
  • ISBN : 019875986X
  • Pages : 832 pages

Download or read book Semiconductor Physics written by Sandip Tiwari and published by Oxford University Press, USA. This book was released on 2020 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.

Book Semiconductor Quantum Optoelectronics

Download or read book Semiconductor Quantum Optoelectronics written by A. Miller and published by CRC Press. This book was released on 2020-12-18 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development and application of low-dimensional semiconductors have been rapid and spectacular during the past decade. Ever improving epitaxial growth and device fabrication techniques have allowed access to some remarkable new physics in quantum confined structures while a plethora of new devices has emerged. The field of optoelectronics in particular has benefited from these advances both in terms of improved performance and the invention of fundamentally new types of device, at a time when the use of optics and lasers in telecommunications, broadcasting, the Internet, signal processing, and computing has been rapidly expanding. An appreciation of the physics of quantum and dynamic electronic processes in confined structures is key to the understanding of many of the latest devices and their continued development. Semiconductor Quantum Optoelectronics covers new physics and the latest device developments in low-dimensional semiconductors. It allows those who already have some familiarity with semiconductor physics and devices to broaden and expand their knowledge into new and expanding topics in low-dimensional semiconductors. The book provides pedagogical coverage of selected areas of new and pertinent physics of low-dimensional structures and presents some optoelectronic devices presently under development. Coverage includes material and band structure issues and the physics of ultrafast, nonlinear, coherent, intersubband, and intracavity phenomena. The book emphasizes various devices, including quantum wells, visible, quantum cascade, and mode-locked lasers; microcavity LEDs and VCSELs; and detectors and logic elements. An underlying theme is high-speed phenomena and devices for increased system bandwidths.

Book GaAs High Speed Devices

Download or read book GaAs High Speed Devices written by C. Y. Chang and published by John Wiley & Sons. This book was released on 1994-10-28 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of high-speed semiconductor devices—the genius driving digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics—is inextricably linked to the unique physical and electrical properties of gallium arsenide. Once viewed as a novel alternative to silicon, gallium arsenide has swiftly moved into the forefront of the leading high-tech industries as an irreplaceable material in component fabrication. GaAs High-Speed Devices provides a comprehensive, state-of-the-science look at the phenomenally expansive range of engineering devices gallium arsenide has made possible—as well as the fabrication methods, operating principles, device models, novel device designs, and the material properties and physics of GaAs that are so keenly integral to their success. In a clear five-part format, the book systematically examines each of these aspects of GaAs device technology, forming the first authoritative study to consider so many important aspects at once and in such detail. Beginning with chapter 2 of part one, the book discusses such basic subjects as gallium arsenide materials and crystal properties, electron energy band structures, hole and electron transport, crystal growth of GaAs from the melt and defect density analysis. Part two describes the fabrication process of gallium arsenide devices and integrated circuits, shedding light, in chapter 3, on epitaxial growth processes, molecular beam epitaxy, and metal organic chemical vapor deposition techniques. Chapter 4 provides an introduction to wafer cleaning techniques and environment control, wet etching methods and chemicals, and dry etching systems, including reactive ion etching, focused ion beam, and laser assisted methods. Chapter 5 provides a clear overview of photolithography and nonoptical lithography techniques that include electron beam, x-ray, and ion beam lithography systems. The advances in fabrication techniques described in previous chapters necessitate an examination of low-dimension device physics, which is carried on in detail in chapter 6 of part three. Part four includes a discussion of innovative device design and operating principles which deepens and elaborates the ideas introduced in chapter 1. Key areas such as metal-semiconductor contact systems, Schottky Barrier and ohmic contact formation and reliability studies are examined in chapter 7. A detailed discussion of metal semiconductor field-effect transistors, the fabrication technology, and models and parameter extraction for device analyses occurs in chapter 8. The fifth part of the book progresses to an up-to-date discussion of heterostructure field-effect (HEMT in chapter 9), potential-effect (HBT in chapter 10), and quantum-effect devices (chapters 11 and 12), all of which are certain to have a major impact on high-speed integrated circuits and optoelectronic integrated circuit (OEIC) applications. Every facet of GaAs device technology is placed firmly in a historical context, allowing readers to see instantly the significant developmental changes that have shaped it. Featuring a look at devices still under development and device structures not yet found in the literature, GaAs High-Speed Devices also provides a valuable glimpse into the newest innovations at the center of the latest GaAs technology. An essential text for electrical engineers, materials scientists, physicists, and students, GaAs High-Speed Devices offers the first comprehensive and up-to-date look at these formidable 21st century tools. The unique physical and electrical properties of gallium arsenide has revolutionized the hardware essential to digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics. GaAs High-Speed Devices provides the first fully comprehensive look at the enormous range of engineering devices gallium arsenide has made possible as well as the backbone of the technology—ication methods, operating principles, and the materials properties and physics of GaAs—device models and novel device designs. Featuring a clear, six-part format, the book covers: GaAs materials and crystal properties Fabrication processes of GaAs devices and integrated circuits Electron beam, x-ray, and ion beam lithography systems Metal-semiconductor contact systems Heterostructure field-effect, potential-effect, and quantum-effect devices GaAs Microwave Monolithic Integrated Circuits and Digital Integrated Circuits In addition, this comprehensive volume places every facet of the technology in an historical context and gives readers an unusual glimpse at devices still under development and device structures not yet found in the literature.

Book High Speed Semiconductor Devices

Download or read book High Speed Semiconductor Devices written by H. Beneking and published by Springer Science & Business Media. This book was released on 1994-09-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Speed Semiconductor Devices is the first textbook to focus on this topic. It gives a comprehensive introduction suitable for advanced students of electrical engineering and physics. It is practically oriented considering both physical limits and technical feasibility. It is illustrated with extensive exercises, full solutions and worked examples that give practical insight to and extend the treatment of the text.

Book Introductory Semiconductor Device Physics

Download or read book Introductory Semiconductor Device Physics written by Greg Parker and published by CRC Press. This book was released on 2004-09-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentr

Book Heterostructures and Quantum Devices

Download or read book Heterostructures and Quantum Devices written by Norman G. Einspruch and published by Elsevier. This book was released on 2014-06-28 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical engineering devices. The text covers existing technologies and future possibilities within a common framework of high-performance devices, which will have a more immediate impact on advanced semiconductor physics-particularly quantum effects-and will thus form the basis for longer-term technology development.

Book Semiconductor Physics And Devices

Download or read book Semiconductor Physics And Devices written by Donald Neamen and published by McGraw-Hill Science/Engineering/Math. This book was released on 2003 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neamen's Semiconductor Physics and Devices, Third Edition. deals with the electrical properties and characteristics of semiconductor materials and devices. The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.

Book Semiconductor Physics and Devices

    Book Details:
  • Author : Donald A. Neamen
  • Publisher : McGraw-Hill Science, Engineering & Mathematics
  • Release : 1996-12-31
  • ISBN : 9780256242140
  • Pages : 0 pages

Download or read book Semiconductor Physics and Devices written by Donald A. Neamen and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1996-12-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Physics and Devices: Basic Principles, Second Edition, provides the fundamentals necessary to understand semiconductor device characteristics, operations, and limitations. Neamen's book reveals the fundamentals by establishing for the student a sound understanding of quantum mechanics and an introduction to the quantum theory of solids. This background permits the student to develop a deeper understanding of how essential physics, semiconductor material physics, and semiconductor device physics interrelate. Espousing neither the intuitive approach of many textbooks, nor the highly technical characteristics of handbooks, Semiconductor Physics and Devices: Basic Principles provides students with a resource that is engaging and understandable and instructors with a textbook that offers teachability without sacrificing technical exactitude.

Book Physics of High Speed Transistors

Download or read book Physics of High Speed Transistors written by I︠U︡ras Karlovich Pozhela and published by Springer. This book was released on 1993-12-31 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines in detail the new physical principles and technological approaches that make high-speed transistors possible. It includes discussions of maximum drift velocity in semiconductors, hot-electron transistors, and high-speed devices and integrated circuits to provide a comprehensive overview for physicists, engineers, and students who wish to apply this technology to computer and microwave development.

Book Fundamentals Of Semiconductor Physics And Devices

Download or read book Fundamentals Of Semiconductor Physics And Devices written by Rolf Enderlein and published by World Scientific. This book was released on 1997-02-27 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both.Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource.In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix.