EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High speed and Robust Integrated Silicon Nanophotonics for On chip Interconnects

Download or read book High speed and Robust Integrated Silicon Nanophotonics for On chip Interconnects written by Abdelsalam A. Aboketaf and published by . This book was released on 2014 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optical interconnects offer advantages over electrical interconnects such as higher bandwidth, low power, reduced interconnects delay, and immunity to electro-magnetic interference and signal crosstalk. However, in order for optical interconnects to be widely adopted, the technology must be made cost effective and must be simple to implement with CMOS electronics. Silicon photonics offers a great promise due to its inexpensive material and its compatibility with the current CMOS fabrication technology. Moreover, Silicon as a platform has the ability to integrate with different types of the optical components such as photodetector, modulator, light source, and waveguide to form a photonics integrated circuit. The goal of this work is to develop and fabricate devices that utilize a hybrid electronic-photonic integration to enable high performance optoelectronic computing and communication systems that overcome the barriers of electronics and dramatically enhance the performance of circuits and systems. We experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The system has a footprint 500 micrometer × 700 micrometer and is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip. Also, we propose and fabricate a novel design to demultiplex the high bit rates of OTDM data using two differentially operated 5Gb/s modulators. Moreover, we propose a high-speed hybrid optical-time-division-multiplexing (OTDM) and wavelength-division-multiplexing (WDM) system that seamlessly generates high bit-rate data (200Gbit/s) from a low speed (5Gbit/s) quantum-dot mode locked laser pulse source. By utilizing time and wavelength domains, the proposed design is a promising solution for high-speed, compact and low-power consumption optical networks on chip. And finally, we experimentally demonstrate a robust, low insertion loss, compact Silicon ring resonator electro-optic modulator for Binary Phase Shift Key (BPSK) coding/decoding that encodes data in the phase of light. Our design improves significantly over recently demonstrated PSK modulator designs in terms of insertion loss and stability."--Abstract.

Book High Speed Photonics Interconnects

Download or read book High Speed Photonics Interconnects written by Lukas Chrostowski and published by CRC Press. This book was released on 2017-12-19 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed Photonics Interconnects explores some of the groundbreaking technologies and applications that are based on photonics interconnects. From the Evolution of High-Speed I/O Circuits to the Latest in Photonics Interconnects Packaging and Lasers Featuring contributions by experts from academia and industry, the book brings together in one volume cutting-edge research on various aspects of high-speed photonics interconnects. Contributors delve into a wide range of technologies, from the evolution of high-speed input/output (I/O) circuits to recent trends in photonics interconnects packaging. The book discusses the challenges associated with scaling I/O data rates and current design techniques. It also describes the major high-speed components, channel properties, and performance metrics. The book exposes readers to a myriad of applications enabled by photonics interconnects technology. Learn about Optical Interconnect Technologies Suitable for High-Density Integration with CMOS Chips This richly illustrated work details how optical interchip communication links have the potential to fully leverage increased data rates provided through complementary metal-oxide semiconductor (CMOS) technology scaling at suitable power-efficiency levels. Keeping the mathematics to a minimum, it gives engineers, researchers, graduate students, and entrepreneurs a comprehensive overview of the dynamic landscape of high-speed photonics interconnects.

Book Integrated Nanophotonic Devices

Download or read book Integrated Nanophotonic Devices written by Zeev Zalevsky and published by William Andrew. This book was released on 2010-10-08 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanophotonics is a field of science and technology based on the manipulation of light with equally miniscule structures, in the same way that computer chips are used to route and switch electrical signals. By enabling new high bandwidth, high speed optoelectronic components, nanophotonics has the potential to revolutionize the fields of telecommunications, computation and sensing. In this book, Zalevsky and Abdulhalim explore one of the key technologies emerging within nanophotonics, that of nano-integrated photonic modulation devices and sensors. The attempt to integrate photonic dynamic devices with microelectronic circuits is becoming a major scientific as well as industrial trend due to the fact that currently processing is mainly achieved using microelectronic chips but transmission, especially for long distances, takes place via optical links. Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security and sensing Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds

Book Photonic Interconnects for Computing Systems

Download or read book Photonic Interconnects for Computing Systems written by Mahdi Nikdast and published by River Publishers. This book was released on 2017 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges.

Book Photonic Interconnects for Computing Systems

Download or read book Photonic Interconnects for Computing Systems written by Gabriela Nicolescu and published by CRC Press. This book was released on 2022-09-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there has been a considerable amount of effort, both in industry and academia, focusing on the design, implementation, performance analysis, evaluation and prediction of silicon photonic interconnects for inter- and intra-chip communication, paving the way for the design and dimensioning of the next and future generation of high-performance computing systems. Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges. The majority of the chapters were collected from presentations made at the International Workshop on Optical/Photonic Interconnects for Computing Systems (OPTICS) held over the past two years. The workshop invites internationally recognized speakers on the range of topics relevant to silicon photonics and computing systems. Technical topics discussed in the book include:Design and Implementation of Chip-Scale Photonic Interconnects;Developing Design Automation Solutions for Chip-Scale Photonic Interconnects;Design Space Exploration in Chip-Scale Photonic Interconnects;Thermal Analysis and Modeling in Photonic Interconnects;Design for Reliability;Fabrication Non-Uniformity in Photonic Interconnects;Photonic Interconnects for Computing Systems presents a compilation of outstanding contributions from leading research groups in the field. It presents a comprehensive overview of the design, advantages, challenges, and requirements of photonic interconnects for computing systems. The selected contributions present important discussions and approaches related to the design and development of novel photonic interconnect architectures, as well as various design solutions to improve the performance of such systems while considering different challenges. The book is ideal for personnel in computer/photonic industries as well as academic staff and master/graduate students in computer science and engineering, electronic engineering, electrical engineering and photonics.

Book Integrated Nanophotonics

Download or read book Integrated Nanophotonics written by Peng Yu and published by John Wiley & Sons. This book was released on 2023-05-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Nanophotonics Helps readers understand the important advances in nanophotonics materials development and their latest applications This book introduces the current state of and emerging trends in the development of integrated nanophotonics. Written by three well-qualified authors, it systematically reviews the knowledge of integrated nanophotonics from theory to the most recent technological developments. It also covers the applications of integrated nanophotonics in essential areas such as neuromorphic computing, biosensing, and optical communications. Lastly, it brings together the latest advancements in the key principles of photonic integrated circuits, plus the recent advances in tackling the barriers in photonic integrated circuits. Sample topics included in this comprehensive resource include: Platforms for integrated nanophotonics, including lithium niobate nanophotonics, indium phosphide nanophotonics, silicon nanophotonics, and nonlinear optics for integrated photonics The devices and technologies for integrated nanophotonics in on-chip light sources, optical packaging of photonic integrated circuits, optical interconnects, and light processing devices Applications on neuromorphic computing, biosensing, LIDAR, and computing for AI and artificial neural network and deep learning Materials scientists, physicists, and physical chemists can use this book to understand the totality of cutting-edge theory, research, and applications in the field of integrated nanophotonics.

Book Integrated Photonics for Data Communication Applications

Download or read book Integrated Photonics for Data Communication Applications written by Madeleine Glick and published by Elsevier. This book was released on 2023-07-26 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Photonics for Data Communications Applications reviews the key concepts, design principles, performance metrics and manufacturing processes from advanced photonic devices to integrated photonic circuits. The book presents an overview of the trends and commercial needs of data communication in data centers and high-performance computing, with contributions from end users presenting key performance indicators. In addition, the fundamental building blocks are reviewed, along with the devices (lasers, modulators, photodetectors and passive devices) that are the individual elements that make up the photonic circuits. These chapters include an overview of device structure and design principles and their impact on performance. Following sections focus on putting these devices together to design and fabricate application-specific photonic integrated circuits to meet performance requirements, along with key areas and challenges critical to the commercial manufacturing of photonic integrated circuits and the supply chains being developed to support innovation and market integration are discussed. This series is led by Dr. Lionel Kimerling Executive at AIM Photonics Academy and Thomas Lord Professor of Materials Science and Engineering at MIT and Dr. Sajan Saini Education Director at AIM Photonics Academy at MIT. Each edited volume features thought-leaders from academia and industry in the four application area fronts (data communications, high-speed wireless, smart sensing, and imaging) and addresses the latest advances. Includes contributions from leading experts and end-users across academia and industry working on the most exciting research directions of integrated photonics for data communications applications Provides an overview of data communication-specific integrated photonics starting from fundamental building block devices to photonic integrated circuits to manufacturing tools and processes Presents key performance metrics, design principles, performance impact of manufacturing variations and operating conditions, as well as pivotal performance benchmarks

Book Dynamic Silicon Nanophotonic Devices

Download or read book Dynamic Silicon Nanophotonic Devices written by Stefan Francis Preble and published by . This book was released on 2007 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Chapter 4 we present a new technique for achieving wavelength conversion where the wavelength of light confined in a resonator is changed by dynamically tuning the resonator. We discuss theoretically how this occurs and then demonstrate it experimentally using a ring resonator device.

Book Silicon Photonics for High Performance Computing and Beyond

Download or read book Silicon Photonics for High Performance Computing and Beyond written by Mahdi Nikdast and published by CRC Press. This book was released on 2021-11-16 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.

Book Silicon Photonics for High Performance Computing and Beyond

Download or read book Silicon Photonics for High Performance Computing and Beyond written by Mahdi Nikdast and published by CRC Press. This book was released on 2021-11-17 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.

Book Monolithic and Hybrid Nanophotonic Chips for High speed and Power efficient Optical Computing and Interconnects

Download or read book Monolithic and Hybrid Nanophotonic Chips for High speed and Power efficient Optical Computing and Interconnects written by Zhoufeng Ying and published by . This book was released on 2020 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Past decades have witnessed the unprecedented success in very-large scale integration-based electronic computing, as indicated by the Moore’s law. Transistors continue to scale down from micrometer to nanometer and computing cores continue to increase with all the benefits of lower power consumption and higher speed coming naturally until the falter of Moore’s law in recent years as nanofabrication technology approaches its inevitable limit. Remarkable efforts have been made to develop high-speed and power-efficient computing alternatives in this post-Moore’s law era. The exploration of optical computing started as early as ~1970s when integrated electronic computing was just about to take off. The continuous success of electronic computing over decades has not slowed down but instead stimulated the research on optical computing. It is because photonics own unique and fascinating properties such as ultrahigh speed, high bandwidth, and various multiplexing techniques, making it a promising candidate to supersede electronics especially when electronics face unsolvable obstacles. Fortunately, in this post-Moore’s law era, integrated photonics has evolved rapidly with abundant passive and active micrometer-size components available with ultralow power consumption. It enables integrated optical computing to be comparable with transistor-based electronic computing in terms of speed and power. In this dissertation, a new architecture of electronic-photonic computing will be presented, which makes the full use of electronics and photonics to achieve ultrahigh-speed and low-power-consumption computing that are comparable with the state-of-the-art transistors-based electronic computing. This dissertation will cover bottom-to-top discussions, ranging from gates, circuits, to automatic design algorithm, to architecture and entire system. First, it starts with the introduction of electro-optic logic and then the design and analysis of fundamental logic gates and circuits along with the essential components such as electro-optic modulators. Second, an automated logic synthesis algorithm called And-Inverter Graph will be presented, which is capable of designing computing circuits using these fundamental logic gates automatically and efficiently. Third, an electronic-photonic arithmetic logic unit is proposed with an experimental demonstration of 4-bit circuit operating at 20 GHz. Thorough discussion of the performance is also conducted which shows its potential to surpass the state-of-the-art transistors-based computing circuits in terms of speed and power. Forth, a Moore’s law in optical computing is discussed with one promising method called multi-operand logic gates provided. Lastly, architectural considerations of electronic-photonic computing are presented

Book Nanophotonics

Download or read book Nanophotonics written by David L. Andrews and published by SPIE-International Society for Optical Engineering. This book was released on 2006 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Book Integrated Nanophotonic Devices

Download or read book Integrated Nanophotonic Devices written by Zeev Zalevsky and published by William Andrew Publishing. This book was released on 2010 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanophotonics is a field of science and technology based on the manipulation of light with equally miniscule structures, in the same way that computer chips are used to route and switch electrical signals. By enabling new high bandwidth, high speed optoelectronic components, nanophotonics has the potential to revolutionize the fields of telecommunications, computation and sensing. In this book, Zalevsky and Abdulhalim explore one of the key technologies emerging within nanophotonics, that of nano-integrated photonic modulation devices and sensors. The attempt to integrate photonic dynamic devices with microelectronic circuits is becoming a major scientific as well as industrial trend due to the fact that currently processing is mainly achieved using microelectronic chips but transmission, especially for long distances, takes place via optical links. Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security and sensing Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds

Book Two Dimensional Materials in Nanophotonics

Download or read book Two Dimensional Materials in Nanophotonics written by Yuerui Lu and published by CRC Press. This book was released on 2019-10-31 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional (2D) materials have attracted tremendous interest since the study of graphene in the early 21st century. With their thickness in the angstrom-to-nanometer range, 2D materials, including graphene, transition metal dichalcogenides, phosphorene, silicene, and other inorganic and organic materials, can be an ideal platform to study fundamental many-body interactions because of reduced screening and can also be further engineered for nanophotonic applications. This book compiles research outcomes of leading groups in the field of 2D materials for nanophotonic physics and devices. It describes research advances of 2D materials for various nanophotonic applications, including ultrafast lasers, atomically thin optical lenses, and gratings to inelastically manipulate light propagation, their integrations with photonic nanostructures, and light–matter interactions. The book focuses on actual applications, while digging into the physics underneath. It targets advanced undergraduate- and graduate-level students of nanotechnology and researchers in nanotechnology, physics, and chemistry, especially those with an interest in 2D materials.

Book Robust and Scalable Silicon Photonic Interconnects and Devices

Download or read book Robust and Scalable Silicon Photonic Interconnects and Devices written by Asher Novick and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For these constellations to communicate directly, a new class of satellite must join the sky, with adaptive communication capabilities to translate Baud rate and modulation format between otherwise incompatible constellations. To support each of these applications with integrated photonics solution, advances in both SiPh architectures and the devices that comprise them. This work first presents an overview of the system-level challenges associated with such links, including novel proposed integrated interconnect architectures, and then explores novel photonic devices that are designed to enable critical functionality and overcome system-level limitations. The advances demonstrated in this thesis provide a clear direction towards realizing a future fully permeated by ultra-efficient optical connectivity, supporting resource disaggregation and all-to-all connectivity from green hyper-scale data centers all the way to LEO.

Book Photon Manipulation in Silicon Nanophotonic Circuits

Download or read book Photon Manipulation in Silicon Nanophotonic Circuits written by Ali Wanis Elshaari and published by . This book was released on 2011 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Quantum-based communication systems can potentially achieve the ultimate security from eavesdropping and greatly reduce the operating powers on chip. Light-speed transmission, noise immunity, and low noise properties make photons indispensable for quantum communication to transfer a quantum state through a transmission line. Furthermore, the field of silicon nanophotonics is a fast growing field which is driven by the attractive and promising improvements it has to offer in high pee communication systems and on chip optical interconnects. Consequently, there is a high demand to develop the building blocks for photon manipulation in silicon nanophotonic circuits. The goal of the work is to enable high performance optoelectronic computing and communication systems that overcome the barriers of electronics and dramatically enhance the performance of circuits and systems. We will focus our attention on solving some of the issues with the current systems regarding photon storage, routing, isolation, switching, and energy conversion. We realize a continuously tunable optical memory which breaks the time-bandwidth limit by more than thirty times. This enabled the on-chip photon scattering when transmitted through micro-scale optical cavities. In addition, we develop novel dynamic quantum mechanical models that predict quantum-like behavior of single and multi-photon wavepackets. Furthermore, we report for the first time that efficient red shifts in silicon are achievable with free carrier injection which generally produces blue wavelength shifts. We realize adiabatic wavelength conversion and discrete photonic transitions of single photons in silicon cavities. Moreover, we demonstrate a basic quantum network on chip with an on-chip photon source. We present a novel design for CMOS compatible optical isolator on silicon chip using a system of active cavities. And finally, we analyze a novel ultra-fast broadband modulator in silicon based on free-carrier absorption effect in SOI waveguides integrated with Schottky diodes."--Abstract.

Book Fibre Optic Communication Devices

Download or read book Fibre Optic Communication Devices written by Norbert Grote and published by Springer Science & Business Media. This book was released on 2001-01-26 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.