Download or read book Theory of Laminar Flows HSA 4 Volume 4 written by F. K. Moore and published by Princeton University Press. This book was released on 2015-12-08 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume IV of the High Speed Aerodynamics and Jet Propulsion series. Contents of this volume include: Introduction, by F.K. Moore; Laminar Flow Theory, by P.A. Lagerstrom; Three-Dimensional Laminar Boundary Layers, by A. Mager; Theory of Time-Dependent Laminar Flows, by Nicholas Rott; Hypersonic Boundary Layer Theory, by F.K. Moore; Laminar Flows with Body Forces, by Simon Ostrach; Stability of Laminar Flows, by S.F. Shen. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Download or read book NASA Technical Report written by United States. National Aeronautics and Space Administration and published by . This book was released on 1972 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book NASA Technical Note written by and published by . This book was released on 1968 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Laminar Flow Theory written by P. A. Lagerstrom and published by Princeton University Press. This book was released on 2022-06-14 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid mechanics is one of the greatest accomplishments of classical physics. The Navier-Stokes equations, first derived in the eighteenth century, serve as an accurate mathematical model with which to describe the flow of a broad class of real fluids. Not only is the subject of interest to mathematicians and physicists, but it is also indispensable to mechanical, aeronautical, and chemical engineers, who have to apply the equations to real-world examples, such as the flow of air around an aircraft wing or the motion of liquid droplets in a suspension. In this book, which first appeared in a comprehensive collection of essays entitled The Theory of Laminar Flows (Princeton, 1964), P. A. Lagerstrom imparts the essential theoretical framework of laminar flows to the reader. A concise and elegant description, Lagerstrom's work remains a model piece of writing and has much to offer today's reader seeking an introduction to the flow of nonturbulent fluids. Beginning with the conservation laws that result in the equation of continuity, the Navier-Stokes equation, and the energy transport equation, Lagerstrom moves on to consider viscous waves, low Reynolds-number approximations such as Stokes flow and the Oseen equations, and then high Reynolds-number approximations that are used to describe boundary layers, jets, and wakes. Finally, he examines some compressibility effects, such as those that occur in the laminar boundary layer around a flat plate, both with and without a pressure gradient.
Download or read book CRC Handbook of Tables for Applied Engineering Science written by Ray E. Bolz and published by CRC Press. This book was released on 2019-03-07 with total page 1184 pages. Available in PDF, EPUB and Kindle. Book excerpt: New tables in this edition cover lasers, radiation, cryogenics, ultra-sonics, semi-conductors, high-vacuum techniques, eutectic alloys, and organic and inorganic surface coating. Another major addition is expansion of the sections on engineering materials and compos-ites, with detailed indexing by name, class and usage. The special Index of Properties allows ready comparisons with respect to single property, whether physical, chemical, electrical, radiant, mechani-cal, or thermal. The user of this book is assisted by a comprehensive index, by cross references and by numerically keyed subject headings at the top of each page. Each table is self-explanatory, with units, abbreviations, and symbols clearly defined and tabular material subdivided for easy reading.
Download or read book Stability of Fluid Motions I written by D. D. Joseph and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of stability aims at understanding the abrupt changes which are observed in fluid motions as the external parameters are varied. It is a demanding study, far from full grown"whose most interesting conclusions are recent. I have written a detailed account of those parts of the recent theory which I regard as established. Acknowledgements I started writing this book in 1967 at the invitation of Clifford Truesdell. It was to be a short work on the energy theory of stability and if I had stuck to that I would have finished the writing many years ago. The theory of stability has developed so rapidly since 1967 that the book I might then have written would now have a much too limited scope. I am grateful to Truesdell, not so much for the invitation to spend endless hours of writing and erasing, but for the generous way he has supported my efforts and encouraged me to higher standards of good work. I have tried to follow Truesdell's advice to write this work in a clear and uncomplicated style. This is not easy advice for a former sociologist to follow; if I have failed it is not due to a lack of urging by him or trying by me. My research during the years 1969-1970 was supported in part by a grant from the Guggenheim foundation to study in London.
Download or read book Numerical Solution of the Equations for Compressible Laminar Transitional and Turbulent Boundary Layers and Comparisons with Experimental Data written by Julius E. Harris and published by . This book was released on 1971 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: A numerical method for solving the equations for laminar, transitional, and turbulent compressible boundary layers for either planar or axisymmetric flows is presented. The fully developed turbulent region is treated by replacing the Reynolds stress terms with an eddy viscosity model. The mean properties of the transitional boundary layer are calculated by multiplying the eddy viscosity by an intermittency function based on the statistical production and growth of the turbulent spots. A specifiable turbulent Prandtl number relates the turbulent flux of heat to the eddy viscosity. A three-point implicit finite-difference scheme is used to solve the system of equations. The momentum and energy equations are solved simultaneously without iteration. Numerous test cases are compared with experimental data for supersonic and hypersonic flows; these cases include flows with both favorable and mildly unfavorable pressure gradient histories, mass flux at the wall, and traverse curvature.
Download or read book NASA Technical Paper written by United States. National Aeronautics and Space Administration and published by . This book was released on 1991 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Combustion Theory written by Forman A. Williams and published by CRC Press. This book was released on 2018-03-05 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.
Download or read book Laminar Flow Analysis written by David F. Rogers and published by Cambridge University Press. This book was released on 1992-10-30 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.
Download or read book Fundamentals of Crystal Growth I written by Franz E. Rosenberger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.
Download or read book Solutions of the Second order Boundary layer Equations for Laminar Incompressible Flow written by Michael J Werle and published by . This book was released on 1968 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use is made of self similarity approach and integral momentum technique to obtain solutions of Van Dyke's second-order boundary-layer equations for laminar incompressible flow. Accurate numerical solutions of the most general self similar equations are tabulated for the four second-order contributions due to vorticity interaction, displacement speed, longitudinal curvature, and transverse curvature. A limited number of closed form solutions are obtained which appear to have special significance at the point of first-order boundary-layer separation. In particular it is found that the displacement speed problem can proceed up to separation for only two values of the second-order pressure gradient. All other cases display an infinite discontinuity at this point. Numerical solutions of a large number of cases for the longitudinal and transverse curvature effects well support an identical conclusion. The integral momentum technique applied (a straight forward extension of the Karmen-Pohlhausen solutions) is found to be oversensitive to approximations and in the final analysis is rejected in favor of locally similar solutions. (Author).
Download or read book NASA Technical Paper written by and published by . This book was released on 1991 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Layer Theory written by Herrmann Schlichting and published by Springer Science & Business Media. This book was released on 2003-05-20 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the almost legendary textbook by Schlichting completely revised by Klaus Gersten is now available. This book presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with emphasis on the flow past bodies (e.g. aircraft aerodynamics). It contains the latest knowledge of the subject based on a thorough review of the literature over the past 15 years. Yet again, it will be an indispensable source of inexhaustible information for students of fluid mechanics and engineers alike.
Download or read book The Science Reports of the Research Institutes written by Tōhoku Daigaku and published by . This book was released on 1983 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multiple Scale and Singular Perturbation Methods written by J.K. Kevorkian and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Download or read book Reports written by Tōhoku Daigaku. Kōsoku Rikigaku Kenkyūjo and published by . This book was released on 1982 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: