EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High recovery Inland Desalination

Download or read book High recovery Inland Desalination written by Noe Ortega-Corral and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Recovery Inland Desalination

Download or read book High Recovery Inland Desalination written by Malynda Cappelle and published by . This book was released on 2018 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sustainable Desalination and Water Reuse

Download or read book Sustainable Desalination and Water Reuse written by Eric M.V. Hoek and published by Springer Nature. This book was released on 2022-05-31 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into the most versatile and effective desalination and advanced water treatment technology available. However, there remain certain challenges for improving the cost-effectiveness and sustainability of RO desalination plants in various applications. In low-pressure RO applications, both capital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends to be limited by the salinity limits on brine discharge and cost is dominated by energy demand. The combination of water scarcity and sustainability imperatives, in many locations, is driving system designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles of RO processes, the state-of-the-art for RO membranes, modules and system designs as well as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and renewable energy powered desalination systems. Throughout, we provide examples of installations employing conventional and some novel approaches towards high recovery RO in a range of applications from brackish groundwater desalination to oil and gas produced water treatment and seawater desalination.

Book Development  Modeling  Analysis  and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters

Download or read book Development Modeling Analysis and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters written by Khaled Elsaid and published by . This book was released on 2017 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groundwater is considered the major source of domestic water supply in many countries worldwide. In the absence of surface water supplies, the use of groundwater for domestic, agricultural, and even for industrial purposes becomes essential, especially in rural communities. Groundwater supplies typically are of good quality, and the quality is reasonably uniform throughout the year compared to that of surface water, thus making it suitable for direct use, or simple to treat. A disadvantage of groundwater is the content of dissolved salt as many have a moderate-to-high salinity. The high salinity makes water brackish and thus it requires desalination before use. This has led to wide use of groundwater desalination to produce good-quality water in many regions around the world. Nevertheless, a problem of desalination processes is the generation of a concentrate stream, sometimes called brine or reject, which must be properly managed. The management of brine from brackish groundwater desalination is a significant issue if located far from the coast (i.e. inland plants) or far from public channel to discharge such brine. Some options for brine disposal from inland desalination plants are evaporation ponds, deep-well injection, disposal to municipal sewers, and irrigation of plants tolerant to high salinities. Each of these disposal methods may result in many environmental problems such as groundwater contamination, the decline in crop yields from agricultural lands, the formation of eyesores, decreasing the efficiency of biological wastewater treatment, and making treated sewage effluent unsuitable for irrigation. As a result, the brine management from inland desalination of brackish groundwater is very critical, and the need for affordable and environmentally benign inland desalination has become crucial in many regions worldwide. This work aims to develop an efficient and environmentally benign process for inland desalination of brackish groundwater, which approaches zero liquid discharge (ZLD), maximizing the water produced and minimizing the volume of concentrate effluent. The technical approach involves utilization of two-stage reverse osmosis (RO) units with the intermediate chemical treatment of brine stream that is designed to remove most of the scale-forming constituents, which foul membrane surface in RO and limits its water recovery and hence enable further recovery of water in the secondary RO unit. The treatment process proposed in this work is based on advanced lime softening processes, which have the ability to effectively remove scale-forming constituents, in addition to heavy metals and natural organic matters that might be present in the brine. The process has been applied to the brine produced from 1st stage RO i.e. primary brine stream, to minimize the volume of the stream to be treated chemically, which in turn reduces the capacity of the treatment equipment. Analysis of groundwater quality and scale-forming constituents that are present in the brine stream upon desalination of groundwater has been performed. The analysis has revealed that in most cases of brackish groundwater desalination the recovery is limited by scaling due to calcium sulfate i.e. gypsum, and amorphous silica. Thus, the main objective set for the chemical treatment of the brine stream focused on removal of calcium, sulfate, and silica. Advanced lime softening based on high lime doses along with sodium aluminate, as in ultra-high lime with alumina UHLA process, has been proposed for chemical treatment of brine. Bench-scale experiments conducted to evaluate the effectiveness of the proposed chemical treatment for removal of scale-forming constituents, particularly calcium, sulfate, and silica by studying the different factors affecting the removals efficiency from synthetic solutions containing sulfate-only, silica-only, and model brine solution. The results obtained have revealed that the proposed process was very effective and results generally in high and quick removals of calcium, sulfate, and silica of more than 80% within 2 hrs under different experimental conditions. In addition, beneficial uses of different solid byproducts formed are investigated, by analyzing the solids resulted to qualitatively and quantitatively to identify the different solids present. This offers the potential to lower both costs and solid disposal problems of solids formed being considered as added value product rather than solid waste that has to be properly managed. Results have shown that the solid precipitate contains a wide range of solids that generally composed of calcium, magnesium, aluminum along with carbonate, sulfate, and silicate, which have several potential applications as soil sub-grade, and in cement industry. Equilibrium model to simulate the chemical treatment process that is able to predict the required chemical reagents doses, effluent water quality for a given influent water quality and treatment levels has been developed utilizing OLI stream analyzer, the developed model was found to well predict the performance of the chemical treatment at equilibrium conditions. Rigorous membrane separation model has developed in Aspen Custom Modeler to more accurately model RO desalination, which is to be combined with the developed equilibrium model to formulate a complete 1st Stage RO-Chemical Treatment-2nd Stage RO process model. The developed complete and validated model has been then used to fully and accurately simulate the performance of the proposed Zero Liquid Discharge desalination process. The present work results in three novel achievements: first, introducing a very effective intermediate chemical treatment, which efficiently remove sulfate, particularly from brine. Most of the previously proposed intermediate treatment processes remove sulfate as calcium sulfate i.e. gypsum, however in the introduced process, sulfate is removed in calcium-aluminum-sulfate complexes, which has very low solubility, making the brine highly undersaturated with respect to gypsum, and hence lowering the fouling propensity in the secondary RO, leading to maximizing the overall recovery. In addition, the chemical treatment has been successfully modeled for better simulate of its performance for different brine qualities, which are usually encountered in brackish ground desalination due to the high location-specific nature of groundwater quality. Second, the developed membrane model has treated the species present in water as ions, accounting for monovalent and divalent ions separately, and obtaining a different permeability coefficient for their transport through the membrane. This is different from most developed RO models, which simplify the transport through the membranes to only water and salt permeability coefficients. This treatment results in better and more refined modeling and simulation of the RO membrane separation, as the RO membrane interact differently to ions present in water. Third, the complete process model, results from combining the developed equilibrium model of the chemical treatment, and membrane separation model, has revealed very promising results of achieving high recovery desalination of about 93.5% suitable for drinking water purposes, which is higher by about 90% than most of the reported literature, whose result in reducing the brine volume from 25% in conventional desalination to only 6.5% in the proposed process, i.e. brine volume reduction of 74% relative to conventional inland desalination, and 35% relative to other high recovery processes, at reasonable chemical treatment levels.

Book High Recovery Desalination of Brackish Water by Chemically enhanced Seeded Precipitation

Download or read book High Recovery Desalination of Brackish Water by Chemically enhanced Seeded Precipitation written by Brian Carey McCool and published by . This book was released on 2012 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various regions around the world are confronted with dwindling water supplies and thus the need for exploiting non-traditional inland brackish water resource, as well as reclamation and reuse of municipal wastewater and agricultural drainage (AD) water. Reverse osmosis (RO) membrane desalination is the primary technology for inland brackish water desalting. However, successful implementation of RO technology requires operation at high product water recovery (>85%) in order to minimize the volume of generated concentrate (i.e., brine). Brine management is a key factor governing the economics of inland water desalination. Therefore, brine volume reduction is critical to enabling various brine residual management options. At high water recovery, dissolved mineral salts (e.g., CaSO4, BaSO4, CaCO3) may become concentrated above their solubility limits and may crystallize in the bulk and onto the surface of the RO membranes. Mineral crystallization leads to membrane scaling and hence leads to flux decline, increased process costs, and shortening of membrane life. Therefore, the attainable desalination water recovery is limited by mineral scaling. Many inland brackish water sources contain high concentrations of sparingly soluble mineral salts. In certain areas, such as in California's San Joaquin Valley (SJV), brackish water is near saturation with respect to calcium sulfate and barium sulfate. Based on the current work, single-stage RO desalination in SJV would generally be limited to ~50-70%. In order to desalt brackish water of high mineral scaling propensity at a high recovery level (>85%), the feasibility of intermediate concentrate demineralization (ICD) of primary RO (PRO) concentrate, as a means of enabling secondary RO (SRO) desalting, was investigated with a focus on brackish water having high concentrations of gypsum salt precursor ions (i.e., calcium and sulfate). Accordingly, a two-step chemically-enhanced seeded precipitation (CESP) ICD process was developed in which the PRO concentrate is treated prior to further SRO desalting. The first step is lime precipitation softening (PS) which serves to induce sufficient CaCO3 crystallization in order to remove residual antiscalant (AS), a PRO feed treatment additive (generally polymeric) used for scale control, that would otherwise inhibit precipitation (in the ICD) of the target mineral salt scalants. Subsequently, gypsum seeded precipitation (GSP) is carried out to reduce the level of calcium sulfate saturation. The CESP process was evaluated experimentally, in a batch crystallizer, using synthetic PRO concentrate and also PRO concentrate generated in the field, from AD water, using a spiral-wound RO pilot plant. The effect of residual AS (from the PRO stage) on retardation of mineral salt precipitation (in the ICD) was evaluated using both a generic (polyacrylic acid) and a commercial AS. Laboratory batch CESP studies were carried out in which the CESP process conditions were first optimized with respect to the required lime and gypsum seed doses. For raw brackish water that was about 98% saturated with respect to gypsum, PRO desalination at 52%-62% recovery yielded a brine stream 70-150% above saturation. CESP treatment, at lime doses of 0.25-0.35 mg/L and gypsum seeding of 4-5 g/L, enabled reduction of gypsum concentration to only 10-15% above its saturation. In general, the sequential processes of lime treatment for 10-20 minutes followed by ~1 hr of GSP were sufficient to achieve the above level of gypsum desupersaturation. GSP alone reduced gypsum saturation by only ~5%. PRO brine desupersaturation via CESP was feasible due to the effectiveness of AS removal (up to 90% for AS content of up to 10 mg/L in the PRO brine). Analysis of AS removal using a fundamental AS adsorption model, along with measurements of the size distribution of precipitating CaCO3 crystals, indicated that the area for AS adsorption provided by lime-induced nucleation of CaCO3 crystals is the key factor governing AS removal. In order to establish the feasibility of deploying CESP as a continuous process, a numerical model was developed for a fluidized bed reactor for the GSP stage. Model simulations indicated that the required level of calcium sulfate desupersaturation could be maintained by solids recycling leading to a steady-state particle size distribution. Process simulations and economic analysis were carried out for the integrated process of PRO, CESP and SRO (PRO-CESP-SRO) demonstrating the existence of an optimal recovery (with respect to product water treatment cost). For the evaluated SJV brackish AD water source, the optimal recovery was about 93%. Overall brackish water treatment cost, when considering the disposal cost of high salinity AD water, was lower for PRO-CESP-SRO relative to a similar process based on conventional PS or utilizing a single stage RO which would be of limited recovery (

Book Improving Recovery

Download or read book Improving Recovery written by Desmond F. Lawler and published by . This book was released on 2010 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Membrane Processes

    Book Details:
  • Author : Robert Rautenbach
  • Publisher : John Wiley & Sons
  • Release : 1989
  • ISBN :
  • Pages : 486 pages

Download or read book Membrane Processes written by Robert Rautenbach and published by John Wiley & Sons. This book was released on 1989 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental processes of mass transport in membranes are outlined in this book, which also develops the applications of these processes in industry. Local transport phenomena and the behaviour of individual elements, the technical unit and the module are all examined.

Book Improving Recovery in Reverse Osmosis Desalination of Inland Brackish Groundwaters Via Electrodialysis

Download or read book Improving Recovery in Reverse Osmosis Desalination of Inland Brackish Groundwaters Via Electrodialysis written by William Shane Walker and published by . This book was released on 2010 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: As freshwater resources are limited and stressed, and as the cost of conventional drinking water treatment continues to increase, interest in the development of non-traditional water resources such as desalination and water reuse increases. Reverse osmosis (RO) is the predominant technology employed in inland brackish groundwater desalination in the United States, but the potential for membrane fouling and scaling generally limits the system recovery. The general hypothesis of this research is that electrodialysis (ED) technology can be employed to minimize the volume of concentrate waste from RO treatment of brackish water (BW) and thereby improve the environmental and economic feasibility of inland brackish water desalination. The objective of this research was to investigate the performance sensitivity and limitations of ED for treating BWRO concentrate waste through careful experimental and mathematical analysis of selected electrical, hydraulic, and chemical ED variables. Experimental evaluation was performed using a laboratory-scale batch-recycle ED system in which the effects of electrical, hydraulic, and chemical variations were observed. The ED stack voltage showed the greatest control over the rate of ionic separation, and the specific energy invested in the separation was approximately proportional to the applied voltage and equivalent concentration separated. An increase in the superficial velocity showed marginal improvements in the rate of separation by decreasing the thickness of the membrane diffusion boundary layers. A small decrease in the nominal recovery was observed because of water transport by osmosis and electroosmosis. Successive concentration of the concentrate by multiple ED stages demonstrated that the recovery of BWRO concentrate could significantly improve the overall recovery of inland BWRO systems. A mathematical model for the steady-state performance of an ED stack was developed to simulate the treatment of BWRO concentrates by accounting for variation of supersaturated multicomponent solution properties. A time-dependent model was developed that incorporated the steady-state ED model to simulate the batch-recycle experimentation. Comparison of the electrical losses revealed that the electrical resistance of the ion exchange membranes becomes more significant with increasing solution salinity. Also, a simple economic model demonstrated that ED could feasibly be employed, especially for zero-liquid discharge.

Book Sustainable Desalination and Water Reuse

Download or read book Sustainable Desalination and Water Reuse written by Eric M.V. Hoek and published by Morgan & Claypool Publishers. This book was released on 2021-06-18 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into the most versatile and effective desalination and advanced water treatment technology available. However, there remain certain challenges for improving the cost-effectiveness and sustainability of RO desalination plants in various applications. In low-pressure RO applications, both capital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends to be limited by the salinity limits on brine discharge and cost is dominated by energy demand. The combination of water scarcity and sustainability imperatives, in many locations, is driving system designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles of RO processes, the state-of-the-art for RO membranes, modules and system designs as well as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and renewable energy powered desalination systems. Throughout, we provide examples of installations employing conventional and some novel approaches towards high recovery RO in a range of applications from brackish groundwater desalination to oil and gas produced water treatment and seawater desalination.

Book Management of Concentrate from Desalination Plants

Download or read book Management of Concentrate from Desalination Plants written by Nikolay Voutchkov and published by Elsevier. This book was released on 2020-08-15 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Management of Concentrate from Desalination Plants provides an overview of the alternatives for managing concentrate generated by brackish water and seawater desalination plants, as well as site-specific factors involved in the selection of the most viable alternative for a given project, and the environmental permitting requirements and studies associated with their implementation. The book focuses on widely used alternatives for disposal of concentrate, including discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; evaporation; and zero liquid discharge. Direct discharge through new outfall; discharge through existing wastewater treatment plant outfall; and co-disposal with the cooling water of existing coastal power plant are thoroughly described, and design guidance for the use of these concentrate disposal alternatives is presented with engineers and practitioners in the field of desalination in mind. Key advantages, disadvantages, environmental impact issues, and possible solutions are presented for each discharge alternative. Easy-to-use graphs depicting construction costs as a function of concentrate flow rate are provided for all key concentrate management alternatives. Gives a critical overview of the latest practices and technological advancements in managing concentrate Discusses the relationship between concentrate quality and quantity and other desalination processes Provides design and cost guidance information to assist practitioners with the selection and sizing of the most commonly practiced concentrate disposal alternatives

Book Electrodialysis Reversal for the Desalination of Inland Brackish Water

Download or read book Electrodialysis Reversal for the Desalination of Inland Brackish Water written by Masoume Jaberi and published by . This book was released on 2015 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The worsening global scarcity of freshwater threatens worldwide peace and prosperity, which are intimately tied to the availability of clean, fresh water (J. E. Miller, 2003). One approach for alleviating this threat is desalination, which can turn brackish and saline water sources into freshwater, and electrodialysis reversal (EDR) is a proven and widely used technology that can desalinate brackish waters in inland areas such as the southwestern United States. In a significant advantage over other membrane-based systems like reverse osmosis, EDR's ability to clean itself renders the system resistant to scaling and fouling and allows it to operate at high levels of water recovery. In a further benefit, this system typically requires less energy than thermal distillation to desalinate brackish water, leading to a reduction in overall desalination costs. To identify the operating limits of EDR and find the parameters that maximize its performance, this research investigated the performance sensitivity and limitations of EDR for treating brackish groundwater through careful experimental and statistical analyses of selected electrical, hydraulic, and chemical variables. Experimental evaluation was performed using a pilot-scale EDR system and natural feedwaters at the Brackish Groundwater National Desalination Research Facility in Alamogordo, NM; statistical analyses were carried out using SAS software. Based on the experimental results and statistical analyses, multi-linear regression models were developed for EDR systems for removal ratio, current, and specific energy consumption.

Book A Continuous Process for RO Concentrate Desupersaturation

Download or read book A Continuous Process for RO Concentrate Desupersaturation written by Jack Lei and published by . This book was released on 2016 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reverse osmosis (RO) desalination of inland brackish water can replenish dwindling water supplies in various regions around the world. However, successful implementation of RO technology requires high product water recovery (>85%) in order to minimize the volume of generated concentrate brine. Therefore, brine management is a critical aspect of inland water desalination. At high water recovery, dissolved mineral salts (e.g. CaSO4, CaCO3) may concentrate above their solubility limits and may crystallize, potentially blocking or damaging RO membrane surfaces, reduce water permeate flux, and shorten membrane life. Therefore, it is essential to reduce the propensity for mineral scaling in order to increase the potential for high product water recovery. Attaining high recovery for inland water desalination, while avoiding membrane mineral scaling, can be achieved via an intermediate concentrate demineralization (ICD) method that utilizes two-step chemically-enhanced seeded precipitation (CESP) process. In the CESP approach, primary RO concentrate is first treated via partial lime softening in which residual antiscalant in the PRO concentrate is scavenged by precipitating calcium carbonate (CaCO3). The filtered lime treated PRO concentrate is then treated in a seeded gypsum (CaSO4[TM]2H2O) precipitation step whereby, gypsum crystal seeds promote rapid crystal growth. As a consequence, the treated PRO stream is desupersaturated with respect to gypsum and upon filtration step; a secondary RO desalting step is carried out to increase the overall product water recovery. Development of the ICD approach as a continuous process suitable for deployment in RO desalting is the focus of the present study. Accordingly, a novel system for continuous chemically enhanced seeded precipitation (CCESP) pilot was developed and constructed consisting of an alkaline chemical softening flocculation tank followed by a vertical static mixing bed reactor for seeded precipitation. The overall feasible feed slow rate for the pilot CCESP system was 0.026 - 0.25 gpm. Evaluation of the continuous ICD process performance was undertaken with a range of solutions that mimic PRO concentrate produced from desalination of San Joaquin Valley brackish water at a recovery of 63%. The major salts in the PRO concentrate feed to the CCESP included CaCl2 (30.7 mM), Na2SO4 (145.4 mM), MgSO4 (31.2 mM), NaHCO3 (11.4 mM), and NaCl (20.3 mM). Antiscalant (Flocon 260, 5 mg/L) was introduced to the PRO concentrate in order to assess the feasibility for residual antiscalant (typically present in PRO concentrate) removal so as to avoid retardation of the subsequent gypsum desupersaturation step. The CCESP system enabled continuous gypsum desupersaturation by purging spent gypsum seeds and recycling a portion of the seeds or introducing fresh seeds to the fluidized bed. Various gypsum seeds were tested, with a focus on industrial sources for gypsum (e.g. mining, drywall, food, agriculture) due to their availability and low cost. The purity of the gypsum seeds was found to be a key factor, where gypsum seeds with >98% purity were found to be most effective. Using the synthetic PRO concentrate, each of the two steps of the process were first evaluated individually to determine the optimal operating conditions and subsequently combined to evaluate the complete continuous operation. In the CCESP, lime softening occurs in a flocculation tank with recirculation, solids removal from the lime treated stream is via an inline centrifugal separator, and the gypsum seeded precipitation takes place in a fluidized bed. It was found that CCESP treatment of the PRO concentrate with 5.75 mM lime enabled up to 68% removal of the residual antiscalant. Subsequent gypsum seeded precipitation (initial seed loading of 240 g/L gypsum) reduced the PRO concentrate gypsum supersaturation index (SIg) level from 2.36 to nearly unity. The above level of gypsum desupersaturation was assessed to be sufficient for carrying out a secondary RO desalting that would enable increased recovery from 63% at the PRO step to an overall recovery of about 85% and possibly higher. The present study successfully developed a continuous ICD process and demonstrated its technical feasibility. The present results are encouraging and support the merit of evaluating the process under field conditions. Overall, it is expected that deployment of the CCESP process will enable high recovery desalting of challenging inland water of high mineral scaling propensity.

Book Desalination

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2008-09-14
  • ISBN : 0309119235
  • Pages : 313 pages

Download or read book Desalination written by National Research Council and published by National Academies Press. This book was released on 2008-09-14 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an exponential increase in desalination capacity both globally and nationally since 1960, fueled in part by growing concern for local water scarcity and made possible to a great extent by a major federal investment for desalination research and development. Traditional sources of supply are increasingly expensive, unavailable, or controversial, but desalination technology offers the potential to substantially reduce water scarcity by converting the almost inexhaustible supply of seawater and the apparently vast quantities of brackish groundwater into new sources of freshwater. Desalination assesses the state of the art in relevant desalination technologies, and factors such as cost and implementation challenges. It also describes reasonable long-term goals for advancing desalination technology, posits recommendations for action and research, estimates the funding necessary to support the proposed research agenda, and identifies appropriate roles for governmental and nongovernmental entities.

Book Membrane Desalination

    Book Details:
  • Author : Andreas Sapalidis
  • Publisher : CRC Press
  • Release : 2020-09-13
  • ISBN : 0429670567
  • Pages : 401 pages

Download or read book Membrane Desalination written by Andreas Sapalidis and published by CRC Press. This book was released on 2020-09-13 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide details about membrane desalination processes, starting from basic concepts leading to real world implementation. Chapters cover novel research topics such as biomimetic and nanocomposite membranes, nanostructured fillers for mixed matrix membranes, advanced characterization techniques and molecular modeling. Additionally, engineering and economical aspects of desalination as well as the exploitation of green energy sources are thoroughly presented. This books targets bridging the gap between the everyday research laboratory practices with practical application demands, so that the readers gain a global perspective of all desalination challenges.

Book Water Management

Download or read book Water Management written by Iqbal M. Mujtaba and published by CRC Press. This book was released on 2018-11-05 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exponential growth in population and improved standards of living demand increasing amount of freshwater and are putting serious strain on the quantity of naturally available freshwater worldwide. Water Management: Social and Technological Perspectives discusses developments in energy-efficient water production, management, wastewater treatment, and social and political aspects related to water management and re-use of treated water. It features a scientific and technological perspective to meeting current and future needs, discussing such technologies as membrane separation using reverse osmosis, the use of nanoparticles for adsorption of impurities from wastewater, and the use of thermal methods for desalination. The book also discusses increasing the efficiency of water usage in industrial, agricultural, and domestic applications to ensure a sustainable system of water production, usage, and recycling. With 30 chapters authored by internationally renowned experts, this work offers readers a comprehensive view of both social and technological outlooks to help solve this global issue.