EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Performance Thin Film Solar Cells Via Nanoscale Interface

Download or read book High Performance Thin Film Solar Cells Via Nanoscale Interface written by Yao-Tsung Hsieh and published by . This book was released on 2018 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been 64 years since Bell Laboratories built the first silicon solar cell in 1954. The harnessing of the almost unlimited energy from the sun for human civilization seems not an untouchable dream anymore. However, the rapid growth of the global population companied with the growing demand to enable a decent life quality causes the energy issue more challenging than ever. Nowadays silicon solar cells continue to take a leading position, not only offering potential solutions for energy demands but also stimulating the development of various photovoltaic technologies. Among them, solution processible thin film solar cells attract most attentions due to multiple advantages over traditional silicon solar cells. In this dissertation, I focus on two most promising types of them: 1) kesterite solar cells and 2) hybrid organic-inorganic perovskite solar cells. Particularly I work on the grain growth mechanism and processing techniques via nanoscale interface engineering to improve materials thin film properties and device architecture design. In Chapter 3, Cu2ZnSn(S,Se)4 was used as a model system to demonstrate the kinetic control of solid-gas reactions at nanoscale by manipulating the surface chemistry of both sol-gel nanoparticles and colloidal nanocrystals. It was identified that thiourea (commonly used as sulfur sources for metal sulfides) can transform to melamine during the film formation, and melamine would serve as surface ligands for as-formed Cu2ZnSn(S,Se)4 nanoparticles. These surface ligands can affect the solid-gas reactions during the selenization, which enable us to control film morphologies and device performance by simply adjusting the amount of surface ligands. To further enhance Cu2ZnSn(S,Se)4 device performance, a systematic investigation on alkali metal doping effect was conducted. In Chapter 4, alkali metal-containing precursors were used to study influences on Cu2ZnSn(S,Se)4 film morphology, crystallinity and electronic properties. K-doped Cu2ZnSn(S,Se)4 solar cells showed the best device performance. Due to the surface electronic inversion effect, various thickness of CdS buffer layers were tested on K-passivated Cu2ZnSn(S,Se)4 surface for further improving device efficiency. Over 8% power conversion efficiency of K-doped Cu2ZnSn(S,Se)4 solar cell with 35 nm CdS has been reached. Finally, in Chapter 5, the hybrid organic-inorganic perovskite solar cells are introduced. We demonstrated a novel tandem device employing nanoscale interface engineering of Cu(In,Ga)Se2 surface alongside a heavy-doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] hole transporting layer between the two subcells that preserves open-circuit voltage, and enhanced both fill factor and short-circuit current. As a result, we have successfully doubled the previous efficiency record for a monolithic perovskite/Cu(In,Ga)Se2 tandem solar cell to 22.43% power conversion efficiency, which is the highest record among thin film monolithic tandem photovoltaic devices. The conclusion and future outlooks of my works on kesterite and perovskites solar cells are summarized in Chapter 6.

Book Nanoscale Surface and Interface Characterization of Earth Abundant Thin Film Solar Cells

Download or read book Nanoscale Surface and Interface Characterization of Earth Abundant Thin Film Solar Cells written by Kasra Sardashti and published by . This book was released on 2016 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film kesterites have been explored as promising absorbers in future photovoltaic devices due to their earth-abundant and non-toxic constituents, which do not impose any future production limitations. However, the current record conversion efficiency of polycrystalline kesterite devices is 12.6%--i.e., at least 2.4% short of the efficiency threshold needed to make this material competitive with chalcogenide-based thin film technologies. This shortage in conversion efficiency has been in part ascribed to the large extent of carrier recombination by defects at the grain boundaries and contact/absorber interfaces. In this work, methods nanoscale compositional and electrical characterization of grain boundaries and contact/absorber interfaces in kesterite solar cells have been developed, using a unique combination of advanced nano-characterization tools including Auger Nanoprobe Microscopy (NanoAuger), Kelvin Probe Force Microscopy (KPFM) and Cryogenic Focused Ion Beam (Cryo-FIB). NanoAuger and KPFM measurements on high-performance CZTSSe thin film PV devices revealed that the presence of SnOx at the grain boundaries is essential to the high VOC. This passivation layer needs to be formed by an air anneal process performed after the film deposition. In contrast to the oxide at the grain boundary, oxide layer on the top surfaces of the grains has been found to be (Sn,Zn),O. A new cross-sectioning method via grazing angle of incidence Cryo-FIB milling, has been developed where smooth cross-sections with at least 10x scale expansion have been prepared. These surfaces were characterized for CIGSe monitor films confirming the presence of MoSe2 interlayer acting as a proper hole contact on the back surface.

Book Nanoscale Photovoltaic Performance of Thin Film Solar Cells by Atomic Force Microscopy

Download or read book Nanoscale Photovoltaic Performance of Thin Film Solar Cells by Atomic Force Microscopy written by Yasemin Kutes and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Solar Cells From Earth Abundant Materials

Download or read book Thin Film Solar Cells From Earth Abundant Materials written by Subba Ramaiah Kodigala and published by Newnes. This book was released on 2013-11-14 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research

Book Recent Advances in Thin Film Photovoltaics

Download or read book Recent Advances in Thin Film Photovoltaics written by Udai P. Singh and published by Springer Nature. This book was released on 2022-09-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Book Thin Film Solar Cells

Download or read book Thin Film Solar Cells written by Yoshihiro Hamakawa and published by Springer Science & Business Media. This book was released on 2003-10-23 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive book on thin-film solar cells, potentially a key technology for solving the energy production problem in the 21st century in an environmentally friendly way. It covers a wide range of scientific and technological aspects of thin film semiconductors - deposition technologies, growth mechanisms and the basic properties of amorphous and nano-crystalline silicon - as well as the optimum design theory and device physics of high-efficiency solar cells, especially of single-junction and multi-junction solar cells. The development of large-area solar cell modules using single and multi-junction solar cells is also considered. Examples of recent photovoltaic systems are presented and analysed.

Book High efficiency Thin film Crystalline Solar Cells

Download or read book High efficiency Thin film Crystalline Solar Cells written by Yangsen Kang and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film high-efficiency crystalline solar cells are expected to play a significant role as a greener, renewable energy source of the future. Such cells have been extensively studied over the past 10 years. Most of this research focused on developing thinner cells to reduce material usage and improving the optical absorption within the thin absorber. Most recently, the active semiconductor layer can be 10 -- 100 times thinner than conventional solar cells by advanced light trapping. However, an improvement in efficiency in thin-film solar cells had not been previously appreciated and is an equally if not more important enhancement of the cells in addition to materials cost saving. This dissertation presents the device physics of thin-film crystalline solar cells and demonstrates the key design principle to achieve higher efficiency by improving two important parameters: open circuit voltage (Voc) and short circuit current (Jsc). The first part of this thesis focuses on achieving high Voc in thin-film c-Si solar cells and demonstrate the voltage enhancement in thin-film Si solar cells in both theoretical simulation and experimental demonstration. Theoretically, thin cells can significantly increase the carrier concentration by confining photo-carriers into a smaller active region and decrease the recombination by reducing the volume of the active region. This results in higher Voc and efficiency. Experimentally, the first Voc enhancement in thin-film solar cells is demonstrated. The 5 æm thick Si cell achieved a Voc of 649 mV, which is superior to the Voc of any other thin-film (sub-25-æm) Si solar cells reported to date. To further improve efficiency, a carrier selective contact of TiO2/Si was developed to reduce the high carrier recombination at the metal contacts associated with the high carrier centration in thin films. Such a contact demonstrates a contact recombination reduction of 33% and a Voc enhancement of 10 mV compared to a conventional metal contact. The second part mainly discusses high Jsc by applying nanoscale light trapping structures to thin-film c-Si and III-V solar cells. Given the challenges in obtaining low surface recombination and high efficiency in nanostructured solar cells, we demonstrated a nanowindow solar cell design with dielectric or wide bandgap semiconductor material that can overcome these challenges. A SiNx nanostructured dielectric layer can provide both light tapping and surface passivation for Si. A thin Si film with such SiNx layer exhibits

Book Interfaces in Nanoscale Photovoltaics

Download or read book Interfaces in Nanoscale Photovoltaics written by Sebastian Zeki Öner and published by . This book was released on 2016 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis deals with material interfaces in nanoscale photovoltaics. Interface properties between the absorbing semiconductor and other employed materials are crucial for an efficient solar cell. While the optical properties are largely unaffected by a few nanometer thin layer, the electronic properties can change tremendously: electrical passivation of surface defects or contact selectivity can turn a piece of black rock with two metal leads into a highly efficient solar cell. On the nanoscale, highly useful properties emerge compared to wafer-based or even thin-film semiconductors. Most importantly, not only directly incident but also adjacent light can be absorbed by the single nanoscale element. As a result, an array of single nanoscale structures with much empty space in between can absorb as much light as a continuous thin-film. This effect leads to largely reduced material consumption and, depending on the growth method, even to a faster growth process for a fully absorbing layer. While this property is enormously beneficial for photovoltaics, another feature creates a great challenge: by nanostructuring semiconductors, the surface-to-volume ratio becomes much larger compared to thin-film or wafer-based solar cells. Consequently, the influence of surface and interface properties on the overall performance of the nanoscale photovoltaic elements increases substantially. In this thesis, nanowires are therefore chosen as a sensitive platform to study the impact of those interface properties on the overall photovoltaic performance. Based on the findings, device designs for more efficient practical nanowire array solar cells and a highly promising manufacturing process are proposed.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-02
  • ISBN : 9780470091272
  • Pages : 502 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-02 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Thin Film Solar Cells

    Book Details:
  • Author : K. L. Chopra
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489904182
  • Pages : 615 pages

Download or read book Thin Film Solar Cells written by K. L. Chopra and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: "You, 0 Sun, are the eye of the world You are the soul of all embodied beings You are the source of all creatures You are the discipline of all engaged in work" - Translated from Mahabharata 3rd Century BC Today, energy is the lifeline and status symbol of "civilized" societies. All nations have therefore embarked upon Research and Development pro grams of varying magnitudes to explore and effectively utilize renewable sources of energy. Albeit a low-grade energy with large temporal and spatial variations, solar energy is abundant, cheap, clean, and renewable, and thus presents a very attractive alternative source. The direct conver sion of solar energy to electricity (photovoltaic effect) via devices called solar cells has already become an established frontier area of science and technology. Born out of necessity for remote area applications, the first commercially manufactured solar cells - single-crystal silicon and thin film CdS/Cu2S - were available well over 20 years ago. Indeed, all space vehicles today are powered by silicon solar cells. But large-scale terrestrial applications of solar cells still await major breakthroughs in terms of discovering new and radical concepts in solar cell device structures, utilizing relatively more abundant, cheap, and even exotic materials, and inventing simpler and less energy intensive fabrication processes. No doubt, this extraordinary challenge in R/D has led to a virtual explosion of activities in the field of photovoltaics in the last several years.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-04-25
  • ISBN : 1119283744
  • Pages : 490 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-25 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Book Advances in Thin Film Solar Cells

Download or read book Advances in Thin Film Solar Cells written by I. M. Dharmadasa and published by CRC Press. This book was released on 2018-09-05 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices. This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine "impact ionisation" and "impurity photovoltaic" effects. The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.

Book Thin Films Photovoltaics

Download or read book Thin Films Photovoltaics written by Beddiaf Zaidi and published by BoD – Books on Demand. This book was released on 2022-02-23 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film photovoltaic-based solar modules produce power at a low cost per watt. They are ideal candidates for large-scale solar farms as well as building-integrated photovoltaic applications. They can generate consistent power, not only at elevated temperatures but also on cloudy, overcast days and at low sun angles.Thin film photovoltaics are second-generation solar cells produced by depositing one or more thin layers, or thin films, of photosensitive material on a suitable substrate such as glass, polymer, or metal. Thin film solar cells are based on various materials such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin film silicon (a-Si, TF-Si) are commercially used in several conventional and advanced technologies.

Book Towards Lightweight and Flexible High Performance Nanocrystalline Silicon Solar Cells Through Light Trapping and Transport Layers

Download or read book Towards Lightweight and Flexible High Performance Nanocrystalline Silicon Solar Cells Through Light Trapping and Transport Layers written by Zachary Gray and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ~23% enhancement in fill factor (FF) and ~16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO.

Book Advanced Nanomaterials for Solar Cells and Light Emitting Diodes

Download or read book Advanced Nanomaterials for Solar Cells and Light Emitting Diodes written by Feng Gao and published by Elsevier. This book was released on 2019-04-26 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials. Provides latest research on nanostructured materials including small molecules, polymers, organic-inorganic perovskites, and many other relevant materials systems for solar cells and LEDs Addresses each promising materials system from principles to process, detailing the advantages and disadvantages of the most relevant methods of processing and fabrication Looks ahead to most likely techniques to improve performance of solar cells and light emitting diodes

Book Engineering Nanoscale Materials for Solar Cells

Download or read book Engineering Nanoscale Materials for Solar Cells written by Yahuitl Osorio Mayon and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this work is to contribute towards developing high-efficiency low cost solar cells that have the potential to decrease the cost of solar energy. The focus is on novel device structures that aim to minimise losses and/or allow high throughput fabrication for antimony sulphide (Sb2S3) and the perovskite methyl ammonium lead iodide (MAPbI3). The first part of the research is on planar Sb2S3 solar cells, and led to a twofold efficiency increase through the use of a planar Sb2S3 layer with a high proportion of c axis aligned crystal planes perpendicular to the substrate. The transport of photo generated carriers along the c-axis aligned Sb2S3 crystal planes has a lower recombination rate and longer effective diffusion lengths than for other crystal planes. A completely planar top Sb2S3 surface on a textured (non planar) substrate was fabricated from a non-planar sulphur rich Sb2S3 layer. The planar top surface of the Sb2S3 layer facilitates the subsequent deposition of compact, thin and uniform layers of other materials which contributes to improve the photovoltaic performance. The second part of the research focused on fabrication of porous TiO2 layers via a flame aerosol system, applied to both Sb2S3 and MAPbI3 solar cells. The flame aerosol system is a high throughput deposition method that could rapidly coat a large area substrate as part of a continuous industrial production line. The mechanical stability of flame-made porous TiO2 layers is crucial to withstanding the subsequent material depositions processes via solution methods. Different annealing methods were used to increase the mechanical stability of flame made porous layers for solar cells. The porosity of the flame made porous TiO2 layers was easily adjusted over a wide range: from 97% to 35%. A porous TiO2 layer with a high porosity could improve the solar cell efficiency by increasing the collection efficiency through better infiltration of the other solar cell materials in the porous layer. The optimised MAPbI3 solar cell with flame made porous TiO2 layer had a comparable efficiency to the control MAPbI3 solar cell with the standard spin-coated porous TiO2 layer, demonstrating its potential with scope for further improvement. The efficiency and stability of perovskite solar cells could be also improved by using SnO2 instead of TiO2 as the former has better electronic and photo catalytic properties than the latter. For this reason, MAPbI3 perovskite solar cells with a flame-made porous SnO2 layer were also investigated. The MAPbI3 solar cell with a flame-made porous SnO2 had promising efficiencies even though the main limitation for a higher efficiency was the use of a compact TiO2 layer with the porous SnO2 layer. The work contained in this thesis provides pathways to reduce recombination losses and fabricate a high-throughput low-cost porous structure for Sb2S3 and MAPbI3 solar cells. The findings from this work could also be implemented with other materials; particularly with mixed-perovskites and sulphur based materials.