EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Performance Computing

Download or read book High Performance Computing written by Thomas Sterling and published by Morgan Kaufmann. This book was released on 2017-12-05 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge. In addition, practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products, and students will begin their careers with an understanding of possible directions for future research and development in HPC. Those who maintain and administer commodity clusters will find this textbook provides essential coverage of not only what HPC systems do, but how they are used. Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators and big data problems Provides numerous examples that explore the basics of supercomputing, while also providing practical training in the real use of high-end computers Helps users with informative and practical examples that build knowledge and skills through incremental steps Features sidebars of background and context to present a live history and culture of this unique field Includes online resources, such as recorded lectures from the authors’ HPC courses

Book Introduction to High Performance Computing for Scientists and Engineers

Download or read book Introduction to High Performance Computing for Scientists and Engineers written by Georg Hager and published by CRC Press. This book was released on 2010-07-02 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author

Book Introduction to High Performance Scientific Computing

Download or read book Introduction to High Performance Scientific Computing written by Victor Eijkhout and published by Lulu.com. This book was released on 2010 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.

Book High Performance Computing

Download or read book High Performance Computing written by John Levesque and published by CRC Press. This book was released on 2010-12-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Book High Performance Computing

Download or read book High Performance Computing written by Kevin Dowd and published by O'Reilly Media. This book was released on 1998 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition gives a thorough overview of the latest workstation and PC architectures and the trends that will influence the next generation. It pays special attention to memory design, tuning code for the best performance, multiprocessors, and benchmarking.

Book High Performance Big Data Computing

Download or read book High Performance Big Data Computing written by Dhabaleswar K. Panda and published by MIT Press. This book was released on 2022-08-02 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.

Book High Performance Computing in Finance

Download or read book High Performance Computing in Finance written by M. A. H. Dempster and published by CRC Press. This book was released on 2018-02-21 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.

Book High Performance Computing Systems and Applications

Download or read book High Performance Computing Systems and Applications written by Jonathan Schaeffer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major advances in computing are occurring at an ever-increasing pace. This is especially so in the area of high performance computing (HPC), where today's supercomputer is tomorrow's workstation. High Performance Computing Systems and Applications is a record of HPCS'98, the 12th annual Symposium on High Performance Computing Systems and Applications. The quality of the conference was significantly enhanced by the high proportion of keynote and invited speakers. This book presents the latest research in HPC architecture, networking, applications and tools. Of special note are the sections on computational biology and physics. High Performance Computing Systems and Applications is suitable as a secondary text for a graduate-level course on computer architecture and networking, and as a reference for researchers and practitioners in industry.

Book A Practical Approach to High Performance Computing

Download or read book A Practical Approach to High Performance Computing written by Sergei Kurgalin and published by Springer Nature. This book was released on 2019-11-10 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.

Book Introduction to High Performance Scientific Computing

Download or read book Introduction to High Performance Scientific Computing written by David L. Chopp and published by SIAM. This book was released on 2019-03-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.

Book High Performance Computing in Structural Engineering

Download or read book High Performance Computing in Structural Engineering written by Hojjat Adeli and published by CRC Press. This book was released on 1998-11-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance multiprocessor computers provide new and interesting opportunities to solve large-scale structural engineering problems. However, the development of new computational models and algorithms that exploit the unique architecture of these machines remains a challenge. High Performance Computing in Structural Engineering explores the use of supercomputers with vectorization and parallel processing capabilities in structural engineering applications. The book focuses on the optimization of large structures subjected to the complicated, implicit, and discontinuous constraints of commonly used design codes and presents robust parallel-algorithms for analysis of these structures. The authors apply the algorithms to and analyze the performance of minimum weight designs of large, steel space trusses and moment-resisting frames, with or without bracings, consisting of discrete standard shapes. They clearly show that adroit and judicious use of vectorization techniques can improved the speedup of an optimization algorithm, and that parallel processing can lead to even further speedup. With its review of the necessary background material, generous illustrations, and unique content, this is the definitive resource for the analysis and optimization of structure on shared-memory multiprocessor computers. By extension, High Performance Computing in Structural Engineering will prove equally valuable in distributed computing on a cluster of workstations

Book An Introduction to High performance Scientific Computing

Download or read book An Introduction to High performance Scientific Computing written by Lloyd Dudley Fosdick and published by MIT Press. This book was released on 1996 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series

Book Software Optimization for High performance Computing

Download or read book Software Optimization for High performance Computing written by Kevin R. Wadleigh and published by Prentice Hall Professional. This book was released on 2000 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.

Book Parallel I O for High Performance Computing

Download or read book Parallel I O for High Performance Computing written by John M. May and published by Morgan Kaufmann. This book was released on 2001 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: "I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is improving far less quickly. As a result, the performance of carefully tuned parallel programs can slow dramatically when they read or write files-and the problem is likely to get far worse. Parallel input and output techniques can help solve this problem by creating multiple data paths between memory and disks. However, simply adding disk drives to an I/O system without considering the overall software design will not significantly improve performance. To reap the full benefits of a parallel I/O system, application programmers must understand how parallel I/O systems work and where the performance pitfalls lie. Parallel I/O for High Performance Computing directly addresses this critical need by examining parallel I/O from the bottom up. This important new book is recommended to anyone writing scientific application codes as the best single source on I/O techniques and to computer scientists as a solid up-to-date introduction to parallel I/O research. Features: An overview of key I/O issues at all levels of abstraction-including hardware, through the OS and file systems, up to very high-level scientific libraries. Describes the important features of MPI-IO, netCDF, and HDF-5 and presents numerous examples illustrating how to use each of these I/O interfaces. Addresses the basic question of how to read and write data efficiently in HPC applications. An explanation of various layers of storage - and techniques for using disks (and sometimes tapes) effectively in HPC applications.

Book Industrial Applications of High Performance Computing

Download or read book Industrial Applications of High Performance Computing written by Anwar Osseyran and published by CRC Press. This book was released on 2015-04-01 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial Applications of High-Performance Computing: Best Global Practices offers a global overview of high-performance computing (HPC) for industrial applications, along with a discussion of software challenges, business models, access models (e.g., cloud computing), public-private partnerships, simulation and modeling, visualization, big data analysis, and governmental and industrial influence. Featuring the contributions of leading experts from 11 different countries, this authoritative book: Provides a brief history of the development of the supercomputer Describes the supercomputing environments of various government entities in terms of policy and service models Includes a case study section that addresses more subtle and technical aspects of industrial supercomputing Shows how access to supercomputing matters, and how supercomputing can be used to solve large-scale and complex science and engineering problems Emphasizes the need for collaboration between companies, political organizations, government agencies, and entire nations Industrial Applications of High-Performance Computing: Best Global Practices supplies computer engineers and researchers with a state-of-the-art supercomputing reference. This book also keeps policymakers and industrial decision-makers informed about the economic impact of these powerful technological investments.

Book High Performance Computing in Science and Engineering    14

Download or read book High Performance Computing in Science and Engineering 14 written by Wolfgang E. Nagel and published by Springer. This book was released on 2015-02-14 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.