Download or read book Atoms Solids and Plasmas in Super Intense Laser Fields written by Dimitri Batani and published by Springer Science & Business Media. This book was released on 2001-09-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily
Download or read book Advances in Solid State Lasers written by Mikhail Grishin and published by BoD – Books on Demand. This book was released on 2010-02-01 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invention of the solid-state laser has initiated the beginning of the laser era. Performance of solid-state lasers improved amazingly during five decades. Nowadays, solid-state lasers remain one of the most rapidly developing branches of laser science and become an increasingly important tool for modern technology. This book represents a selection of chapters exhibiting various investigation directions in the field of solid-state lasers and the cutting edge of related applications. The materials are contributed by leading researchers and each chapter represents a comprehensive study reflecting advances in modern laser physics. Considered topics are intended to meet the needs of both specialists in laser system design and those who use laser techniques in fundamental science and applied research. This book is the result of efforts of experts from different countries. I would like to acknowledge the authors for their contribution to the book. I also wish to acknowledge Vedran Kordic for indispensable technical assistance in the book preparation and publishing.
Download or read book High order Harmonic Generation In Solids written by Marcelo Ciappina and published by World Scientific. This book was released on 2024-06-11 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'High-order harmonics emerging from the interaction of strong laser fields with solid matter constitute a novel, highly sensitive tool for interrogating electronic structure and dynamics in solids. At the interface of attosecond physics and condensed matter physics, this book provides an excellent overview of the current state of the art.'Ferenc KrauszNobel Laureate in Physics, 2023High-order harmonic generation (HHG) in solids, the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with bulk matter, has come of age. Since the seminal experiments and theoretical developments, there has been a constant and vibrant interest in this topic. In this book, we invite experimental and theoretical experts in the field with the aim to summarize the progress made so far and propose new possibilities and prospects for the generation of high-order harmonics using solid samples. Nowadays, it is possible to engineer, both spatially and temporally with nanometric and attosecond resolution, the driven fields. This could bring solid HHG to the next exciting frontier as novel and fully tunable table-top coherent sources.
Download or read book Semiconductor Quantum Optics written by Mackillo Kira and published by Cambridge University Press. This book was released on 2011-11-17 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.
Download or read book Progress in Ultrafast Intense Laser Science XIV written by Kaoru Yamanouchi and published by Springer. This book was released on 2018-12-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Download or read book Attosecond Nanophysics written by Peter Hommelhoff and published by John Wiley & Sons. This book was released on 2015-01-30 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first broad and in-depth overview of current research in attosecond nanophysics, covering the field of active plasmonics via attosecond science in metals and dielectrics to novel imaging techniques with the highest spatial and temporal resolution. The authors are pioneers in the field and present here new developments and potential novel applications for ultra-fast data communication and processing, discussing the investigation of the natural timescale of electron dynamics in nanoscale solid state systems. Both an introduction for starting graduate students, as well as a look at the current state of the art in this hot and emerging field.
Download or read book Optical Properties of Excited States in Solids written by Baldassare di Bartolo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.
Download or read book Strong Field Laser Physics written by Thomas Brabec and published by Springer. This book was released on 2008-08-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
Download or read book Computational Strong Field Quantum Dynamics written by Dieter Bauer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-04-24 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach
Download or read book Laser Plasma Interactions written by Dino A. Jaroszynski and published by CRC Press. This book was released on 2009-03-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Download or read book Time Dependent Density Functional Theory written by Carsten Ullrich and published by Oxford University Press. This book was released on 2012 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Download or read book Quantum Optics with Semiconductor Nanostructures written by Frank Jahnke and published by Elsevier. This book was released on 2012-07-16 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. - A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics - Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures - Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena
Download or read book Advances in Atomic Molecular and Optical Physics written by Susanne Yelin and published by Academic Press. This book was released on 2021-07-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Atomic, Molecular, and Optical Physics, Volume 70 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts. - Presents the work of international experts in the field - Contains comprehensive articles that compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emerging - Ideal for users interested in optics, excitons, plasmas and thermodynamics - Covers atmospheric science, astrophysics, and surface and laser physics, amongst other topics
Download or read book Carbon Nanotubes written by Stephanie Reich and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes are exceptionally interesting from a fundamental research point of view. Many concepts of one-dimensional physics have been verified experimentally such as electron and phonon confinement or the one-dimensional singularities in the density of states; other 1D signatures are still under debate, such as Luttinger-liquid behavior. Carbon nanotubes are chemically stable, mechanically very strong, and conduct electricity. For this reason, they open up new perspectives for various applications, such as nano-transistors in circuits, field-emission displays, artificial muscles, or added reinforcements in alloys. This text is an introduction to the physical concepts needed for investigating carbon nanotubes and other one-dimensional solid-state systems. Written for a wide scientific readership, each chapter consists of an instructive approach to the topic and sustainable ideas for solutions. The former is generally comprehensible for physicists and chemists, while the latter enable the reader to work towards the state of the art in that area. The book gives for the first time a combined theoretical and experimental description of topics like luminescence of carbon nanotubes, Raman scattering, or transport measurements. The theoretical concepts discussed range from the tight-binding approximation, which can be followed by pencil and paper, to first-principles simulations. We emphasize a comprehensive theoretical and experimental understanding of carbon nanotubes including - general concepts for one-dimensional systems - an introduction to the symmetry of nanotubes - textbook models of nanotubes as narrow cylinders - a combination of ab-initio calculations and experiments - luminescence excitation spectroscopy linked to Raman spectroscopy - an introduction to the 1D-transport properties of nanotubes - effects of bundling on the electronic and vibrational properties and - resonance Raman scattering in nanotubes.
Download or read book Attosecond Physics written by Luis Plaja and published by Springer. This book was released on 2013-07-31 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.
Download or read book Berry Phases in Electronic Structure Theory written by David Vanderbilt and published by Cambridge University Press. This book was released on 2018-11-01 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.