EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Mobility Germanium MOSFETs

Download or read book High Mobility Germanium MOSFETs written by John Hennessy and published by . This book was released on 2010 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium offers higher electron and hole mobility than silicon, making it an attractive option for future high-performance MOSFET applications. To date, Ge p-channel device behavior has shown promise, with many reports of measured hole mobilities exceeding that of Si. However, Ge n-channel devices have shown poor performance due to an asymmetric distribution of interface state density (Dit) that degrades electrostatic behavior and carrier mobility. In this work, two methods are investigated for improving the performance of Ge MOSFETs. First, the formation of an interfacial passivation layer via in-situ ozone oxidation is explored. Long channel Ge p- and n-MOSFETs are fabricated with A12 0 3 and HfO2 gate dielectrics deposited by atomic layer deposition (ALD). The ozone surface passivation is observed to result in significant mobility enhancement for all devices, with particularly dramatic improvement in the n-FETs compared to devices with no passivation layer. Measurements of interface state density show a reduction across the entire Ge bandgap. Further improvement of the interface quality has been observed to occur in the presence of n-type channel implants in Ge n-FETs and this effect is studied. All n-type species investigated in this work (P, As, Sb) are seen to result in significant electron mobility enhancement, particularly at low inversion densities. Ge n-FETs receiving channel implants of As or Sb along with the ozone surface passivation exhibit effective electron mobilities higher than Si electron mobility under some conditions of surface electric field for the first time. Substrate bias measurements and low temperature characterization both suggest a reduction in Dit, primarily of acceptor-like trap states near the conduction band.

Book Advanced Gate Stacks for High Mobility Semiconductors

Download or read book Advanced Gate Stacks for High Mobility Semiconductors written by Athanasios Dimoulas and published by Springer Science & Business Media. This book was released on 2008-01-01 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive monograph on gate stacks in semiconductor technology. It covers the major latest developments and basics and will be useful as a reference work for researchers, engineers and graduate students alike. The reader will get a clear view of what has been done so far, what is the state-of-the-art and which are the main challenges ahead before we come any closer to a viable Ge and III-V MOS technology.

Book Physics and Technology of High Mobility  Strained Germanium Channel  Heterostructure MOSFETs

Download or read book Physics and Technology of High Mobility Strained Germanium Channel Heterostructure MOSFETs written by Tejas Krishnamohan and published by . This book was released on 2006 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Germanium Based Technologies

Download or read book Germanium Based Technologies written by Cor Claeys and published by Elsevier. This book was released on 2011-07-28 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium-Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge-technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book. State-of-the-art information available for the first time as an all-in-source Extensive reference list making it an indispensable reference book Broad coverage from fundamental aspects up to industrial applications

Book Interface engineered Ge MOSFETs for Future High Performance CMOS Applications

Download or read book Interface engineered Ge MOSFETs for Future High Performance CMOS Applications written by Duygu Kuzum and published by Stanford University. This book was released on 2009 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the semiconductor industry approaches the limits of traditional silicon CMOS scaling, introduction of performance boosters like novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. Ge has particularly become of great interest as a channel material, owing to its high bulk hole and electron mobilities. However, replacement of Si channel by Ge requires several critical issues to be addressed in Ge MOS technology. High quality gate dielectric for surface passivation, low parasitic source/drain resistance and performance improvement in Ge NMOS are among the major challenges in realizing Ge CMOS. Detailed characterization of gate dielectric/channel interface and a deeper understanding of mobility degradation mechanisms are needed to address the Ge NMOS performance problem and to improve PMOS performance. In the first part of this dissertation, the electrical characterization results on Ge NMOS and PMOS devices fabricated with GeON gate dielectric are presented. Carrier scattering mechanisms are studied through low temperature mobility measurements. For the first time, the effect of substrate crystallographic orientation on inversion electron and hole mobilities is investigated. Direct formation of a high-k dielectric on Ge has not given good results in the past. A good quality interface layer is required before the deposition of a high-K dielectric. In the second part of this dissertation, ozone-oxidation process is introduced to engineer Ge/insulator interface. Electrical and structural characterizations and stability analysis are carried out and high quality Ge/dielectric interface with low interface trap density is demonstrated. Detailed extraction of interface trap density distribution across the bandgap and close to band edges of Ge, using low temperature conductance and capacitance measurements is presented. Ge N-MOSFETs have exhibited poor drive currents and low mobility, as reported by several different research groups worldwide. In spite of the increasing interest in Ge, the major mechanisms behind poor Ge NMOS performance have not been completely understood yet. In the last part of this dissertation, the results on Ge NMOS devices fabricated with the ozone-oxidation and the low temperature source/drain activation processes are discussed. These devices achieve the highest electron mobility to-date, about 1.5 times the universal Si mobility. Detailed interface characterizations, trapping analyses and gated Hall device measurements are performed to identify the mechanisms behind poor Ge NMOS performance in the past.

Book Strain Engineered MOSFETs

Download or read book Strain Engineered MOSFETs written by C.K. Maiti and published by CRC Press. This book was released on 2018-10-03 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.

Book High Mobility and Quantum Well Transistors

Download or read book High Mobility and Quantum Well Transistors written by Geert Hellings and published by Springer Science & Business Media. This book was released on 2013-03-25 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Quantum Well pFET – is discussed. Electrical testing shows remarkable short-channel performance and prototypes are found to be competitive with a state-of-the-art planar strained-silicon technology. High mobility channels, providing high drive current, and heterostructure confinement, providing good short-channel control, make a promising combination for future technology nodes.

Book Fabrication and Characterization of High Mobility Ge P mosfets

Download or read book Fabrication and Characterization of High Mobility Ge P mosfets written by 邱皇智 and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Characterizations of High Mobility Ge N MOSFETs

Download or read book Fabrication and Characterizations of High Mobility Ge N MOSFETs written by 林京毅 and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Mobility Materials for CMOS Applications

Download or read book High Mobility Materials for CMOS Applications written by Nadine Collaert and published by Woodhead Publishing. This book was released on 2018-06-29 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Mobility Materials for CMOS Applications provides a comprehensive overview of recent developments in the field of (Si)Ge and III-V materials and their integration on Si. The book covers material growth and integration on Si, going all the way from device to circuit design. While the book's focus is on digital applications, a number of chapters also address the use of III-V for RF and analog applications, and in optoelectronics. With CMOS technology moving to the 10nm node and beyond, however, severe concerns with power dissipation and performance are arising, hence the need for this timely work on the advantages and challenges of the technology. Addresses each of the challenges of utilizing high mobility materials for CMOS applications, presenting possible solutions and the latest innovations Covers the latest advances in research on heterogeneous integration, gate stack, device design and scalability Provides a broad overview of the topic, from materials integration to circuits

Book Fundamentals of III V Semiconductor MOSFETs

Download or read book Fundamentals of III V Semiconductor MOSFETs written by Serge Oktyabrsky and published by Springer Science & Business Media. This book was released on 2010-03-16 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.

Book Prospects of Germanium based MOSFETs and Tunnel Transistors for Low Power Digital Logic

Download or read book Prospects of Germanium based MOSFETs and Tunnel Transistors for Low Power Digital Logic written by Winston Chern and published by . This book was released on 2017 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moore's law has driven technological improvements for decades by halving the areal footprint of the transistor every two years and increasing the performance of making integrated circuits while reducing their cost. The ability to reduce the footprint of the device was enabled by advances in processing technology, novel materials and device design. As ever-smaller footprints are desired, power density limitations and performance degradation require more innovations on all fronts. Recently introduced improvements to integrated circuits are high-K and metal gate for MOSFETs (45-nm node onward), the FinFET (22-nm node onward) and air gaps between copper interconnects (14-nm node) illustrating that at every new technology node there needs to be a materials or process-related improvement to reduce power and maintain performance. Other approaches are also being explored or taken to further improve the MOSFET performance in future technology nodes, namely use of channel materials with higher carrier mobility such as SiGe and Ge for p-MOSFETs, III-V compound semiconductors for n-MOSFETs and steep subthreshold swing devices such as tunnel field effect transistors (TFETs). This work evaluates both approaches utilizing germanium (Ge) and strained-Ge as a material to understand the benefits and drawbacks to both approaches. Hypothetically, high carrier mobility and velocity channel materials can lower the overall power consumption because lower power supply voltage is required to obtain the same amount of current. Germanium and strained-Ge are candidates for the channel material of p-MOSFETs. MOSFETs made using Ge and strained-Ge as the channel material are evaluated based upon the ITRS roadmap requirements using experimental results in this work and data from literature. The approach for using TFETs was evaluated in this work also using germanium as a channel material. TFETs can have a steep subthreshold swing (SS), better than the minimum of 60 mV/decade at room temperature for a MOSFET, which also reduces the total power and supply voltage required for operation. The reduced SS is hypothetically achieved through the band-to-band tunneling which allows for the filtering of the Fermi-tail distribution of carriers. Experimentally, TFETs have not generally shown the steeper than Fermi-tail SS promised by the theory and this work uses both results from fabricated strained-Si/strained-Ge TFETs as well as modeling to explain why this has been the case. The challenges for both technologies are outlined in this thesis and suggestions are made on approaches to tackling their respective intrinsic problems from the point of view of Ge-based devices.

Book SiGe  Ge  and Related Compounds 6  Materials  Processing  and Devices

Download or read book SiGe Ge and Related Compounds 6 Materials Processing and Devices written by D. Harame and published by The Electrochemical Society. This book was released on with total page 1042 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Source Drain Engineering of Nanoscale Germanium based MOS Devices

Download or read book The Source Drain Engineering of Nanoscale Germanium based MOS Devices written by Zhiqiang Li and published by Springer. This book was released on 2016-03-24 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on reducing the high parasitic resistance in the source/drain of germanium nMOSFET. With adopting of the Implantation After Germanide (IAG) technique, P and Sb co-implantation technique and Multiple Implantation and Multiple Annealing (MIMA) technique, the electron Schottky barrier height of NiGe/Ge contact is modulated to 0.1eV, the thermal stability of NiGe is improved to 600°C and the contact resistivity of metal/n-Ge contact is drastically reduced to 3.8×10−7Ω•cm2, respectively. Besides, a reduced source/drain parasitic resistance is demonstrated in the fabricated Ge nMOSFET. Readers will find useful information about the source/drain engineering technique for high-performance CMOS devices at future technology node.

Book High Purity Silicon 11

    Book Details:
  • Author : E. Simoen
  • Publisher : The Electrochemical Society
  • Release : 2010-10
  • ISBN : 1566778301
  • Pages : 262 pages

Download or read book High Purity Silicon 11 written by E. Simoen and published by The Electrochemical Society. This book was released on 2010-10 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers included in this issue of ECS Transactions were originally presented in the symposium ¿High Purity Silicon 11¿, held during the 218th meeting of The Electrochemical Society, in Las Vegas, Nevada from October 10 to 15, 2010.

Book Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods  Processes  Properties and Applications

Download or read book Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods Processes Properties and Applications written by Filipe Vaz and published by Bentham Science Publishers. This book was released on 2013-06-21 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxynitride thin film technology is rapidly impacting a broad spectrum of applications, ranging from decorative functions (through optoelectronics) to corrosion resistance. Developing a better understanding of the relationships between deposition processes, structure and composition of the deposited films is critical to the continued evolution of these applications. This e-book provides valuable information about the process modeling, fabrication and characterization of metallic oxynitride-based thin films produced by reactive sputtering and some related deposition processes. Its contents are spread in twelve main and concise chapters through which the book thoroughly reviews the bases of oxynitride thin film technology and deposition processes, sputtering processes and the resulting behaviors of these oxynitride thin films. More importantly, the solutions for the growth of oxynitride technology are given in detail with an emphasis on some particular compounds. This is a valuable resource for academic learners studying materials science and industrial coaters, who are concerned not only about fundamental aspects of oxynitride synthesis, but also by their innate material characteristics.

Book CMOS Past  Present and Future

Download or read book CMOS Past Present and Future written by Henry Radamson and published by Woodhead Publishing. This book was released on 2018-04-03 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: CMOS Past, Present and Future provides insight from the basics, to the state-of-the-art of CMOS processing and electrical characterization, including the integration of Group IV semiconductors-based photonics. The book goes into the pitfalls and opportunities associated with the use of hetero-epitaxy on silicon with strain engineering and the integration of photonics and high-mobility channels on a silicon platform. It begins with the basic definitions and equations, but extends to present technologies and challenges, creating a roadmap on the origins of the technology and its evolution to the present, along with a vision for future trends. The book examines the challenges and opportunities that materials beyond silicon provide, including a close look at high-k materials and metal gate, strain engineering, channel material and mobility, and contacts. The book's key approach is on characterizations, device processing and electrical measurements. Addresses challenges and opportunities for the use of CMOS Covers the latest methods of strain engineering, materials integration to increase mobility, nano-scaled transistor processing, and integration of CMOS with photonic components Provides a look at the evolution of CMOS technology, including the origins of the technology, current status and future possibilities