Download or read book High Energy Density Physics written by R Paul Drake and published by Springer. This book was released on 2018-01-02 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation throughout and additional material on equations of state, heat waves, and ionization fronts, as well as problem sets accompanied by solutions.
Download or read book High Energy Density Physics written by R. Paul Drake and published by Springer Science & Business Media. This book was released on 2006-08-31 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has two goals. One goal is to provide a means for those new to high-energy-density physics to gain a broad foundation from one text. The second goal is to provide a useful working reference for those in the ?eld. This book has at least four possible applications in an academic c- text. It can be used for training in high-energy-density physics, in support of the growing number of university and laboratory research groups working in this area. It also can be used by schools with an emphasis on ultrafast lasers, to provide some introduction to issues present in all laser–target - perimentswithhigh-powerlasers,andwiththoroughcoverageofthematerial in Chap. 11 on relativistic systems. In addition, it could be used by physics, applied physics, or engineering departments to provide in a single course an introduction to the basics of ?uid mechanics and radiative transfer, with d- matic applications. Finally, it could be used by astrophysics departments for a similar purpose, with the parallel bene?t of training the students in the similarities and di?erences between laboratory and astrophysical systems. The notation in this text is deliberately sparse and when possible a given symbol has only one meaning. A de?nition of the symbols used is given in Appendix A. In various cases, additional subscripts are added to distinguish among cases of the same quantity, as for example in the use of ? and ? 1 2 to distinguish the mass density in two di?erent regions.
Download or read book Extreme States of Matter written by Vladimir E. Fortov and published by Springer. This book was released on 2015-12-26 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Download or read book Frontiers in High Energy Density Physics written by National Research Council and published by National Academies Press. This book was released on 2003-05-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.
Download or read book Foundations of High Energy Density Physics written by Jon Larsen and published by Cambridge University Press. This book was released on 2017-03-10 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable and complete resource that brings together many of the branches of physics needed in high-energy-density physics. Targeted at research scientists and graduate students in physics and astrophysics, this book begins with basic concepts and develops a detailed explanation of the physics of hydrodynamics and energy transport in plasma.
Download or read book Laboratory Astrophysics written by Guillermo M. Muñoz Caro and published by Springer. This book was released on 2018-10-11 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the most recent, relevant, comprehensive and significant aspects in the well-established multidisciplinary field Laboratory Astrophysics. It focuses on astrophysical environments, which include asteroids, comets, the interstellar medium, and circumstellar and circumplanetary regions. Its scope lies between physics and chemistry, since it explores physical properties of the gas, ice, and dust present in those systems, as well as chemical reactions occurring in the gas phase, the bare dust surface, or in the ice bulk and its surface. Each chapter provides the necessary mathematical background to understand the subject, followed by a case study of the corresponding system. The book provides adequate material to help interpret the observations, or the computer models of astrophysical environments. It introduces and describes the use of spectroscopic tools for laboratory astrophysics. This book is mainly addressed to PhD graduates working in this field or observers and modelers searching for information on ice and dust processes.
Download or read book Physics of High Density Z Pinch Plasmas written by Michael A. Liberman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.
Download or read book Plasma Science written by National Research Council and published by National Academies Press. This book was released on 2008-01-20 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of its current physics decadal survey, Physics 2010, the NRC was asked by the DOE, NSF, and NASA to carry out an assessment of and outlook for the broad field of plasma science and engineering over the next several years. The study was to focus on progress in plasma research, identify the most compelling new scientific opportunities, evaluate prospects for broader application of plasmas, and offer guidance to realize these opportunities. The study paid particular attention to these last two points. This "demand-side" perspective provided a clear look at what plasma research can do to help achieve national goals of fusion energy, economic competitiveness, and nuclear weapons stockpile stewardship. The report provides an examination of the broad themes that frame plasma research: low-temperature plasma science and engineering; plasma physics at high energy density; plasma science of magnetic fusion; space and astrophysical science; and basic plasma science. Within those themes, the report offers a bold vision for future developments in plasma science.
Download or read book The Physics of Inertial Fusion written by Stefano Atzeni and published by OUP Oxford. This book was released on 2004-06-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
Download or read book Quantum Mechanics High Energy Physics and Accelerators written by J. S. Bell and published by World Scientific. This book was released on 1995 with total page 953 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific career of John Stewart Bell was distinguished by its breadth and its quality. He made several very important contributions to scientific fields as diverse as accelerator physics, high energy physics and the foundations of quantum mechanics.This book contains a large part of J S Bell's publications, including those that are recognized as his most important achievements, as well as others that are for no good reason less well known. The selection was made by Mary Bell, Martinus Veltman and Kurt Gottfried, all of whom were involved with John Bell both personally and professionally throughout a large part of his life. An introductory chapter has been written to help place the selected papers in a historical context and to review their significance.This book comprises an impressive collection of outstanding scientific work of one of the greatest scientists of the recent past, and it will remain important and influential for a long time to come.
Download or read book Quantum Chromodynamics at High Energy written by Yuri V. Kovchegov and published by Cambridge University Press. This book was released on 2012-08-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in the current literature, this book is the first entirely dedicated to high energy quantum chromodynamics (QCD) including parton saturation and the color glass condensate (CGC). It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists and interested experimentalists up to date with the current state of research in this field. The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and an experimental outlook, and present the physics of strong interactions in a universal way, making it useful for physicists from various subcommunities of high energy and nuclear physics, and applicable to processes studied at all high energy accelerators around the world. A selection of color figures is available online at www.cambridge.org/9780521112574.
Download or read book Instrumentation In High Energy Physics written by Fabio Sauli and published by World Scientific. This book was released on 1992-06-16 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains topical papers covering the various aspects of instrumentation in high energy physics. The subjects of the contributions, all previously unpublished, have been chosen to provide an overview of the fundamental processes and of the technological problems encountered in detecting, tracking and identifying charged and neutral particles in modern particle physics experiments.Each contribution offers a concise but complete description of the state-of-the-art regarding the subject, and is addressed to post-doctoral and research staff readers; it will also be found useful as a teaching aid for students and participants in specialized schools and workshops on intermediate and high energy experimental physics.
Download or read book Frontiers and Challenges in Warm Dense Matter written by Frank Graziani and published by Springer Science & Business. This book was released on 2014-04-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.
Download or read book Introduction to High Energy Physics written by Donald H. Perkins and published by Cambridge University Press. This book was released on 2000-04-13 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.
Download or read book Physics of and Science with X Ray Free Electron Lasers written by J. Hastings and published by IOS Press. This book was released on 2020-12-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.
Download or read book Energy Density Functional Methods for Atomic Nuclei written by Nicolas Schunck and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functionals, single- and multi-reference methods, and techniques to describe small- and large-amplitude collective motion or nuclei at high excitation energy. Edited by an expert in energy density functional theory, Dr Nicolas Schunck, alongside several experts within the field, this book provides a comprehensive and informative exploration of EDF methods. Detailed derivations, practical approaches, examples and figures are used throughout the book to give a coherent narrative of topics that have hitherto rarely been covered together." -- Prové de l'editor.
Download or read book XXII DAE High Energy Physics Symposium written by Md. Naimuddin and published by Springer. This book was released on 2018-05-23 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As many as 400 physicists and researchers attended the 22nd Symposium to discuss the latest advances in the field. A poster session was also organized to highlight the work and findings of young researchers. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field.