Download or read book High Dimensional Neurocomputing written by Bipin Kumar Tripathi and published by Springer. This book was released on 2014-11-05 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligence.
Download or read book Complex Valued Neural Networks Utilizing High Dimensional Parameters written by Nitta, Tohru and published by IGI Global. This book was released on 2009-02-28 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers the current state-of-the-art theories and applications of neural networks with high-dimensional parameters"--Provided by publisher.
Download or read book Intelligent Autonomous Systems written by Dilip Kumar Pratihar and published by Springer Science & Business Media. This book was released on 2010-02-24 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research book contains a sample of most recent research in the area of intelligent autonomous systems. The contributions include: General aspects of intelligent autonomous systems Design of intelligent autonomous robots Biped robots Robot for stair-case navigation Ensemble learning for multi-source information fusion Intelligent autonomous systems in psychiatry Condition monitoring of internal combustion engine Security management of an enterprise network High dimensional neural nets and applications This book is directed to engineers, scientists, professor and the undergraduate/postgraduate students who wish to explore this field further.
Download or read book Functional and High Dimensional Statistics and Related Fields written by Germán Aneiros and published by Springer Nature. This book was released on 2020-06-19 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Download or read book Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing FANCCO 2015 written by V. Ravi and published by Springer. This book was released on 2015-11-24 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering etc. The applications ranged from social network analysis, twitter sentiment analysis, cross domain sentiment analysis, information security, education sector, e-learning, information management, climate studies, rainfall prediction, brain studies, bioinformatics, structural engineering, sewage water quality, movement of aerial vehicles, etc.
Download or read book Artificial Neural Networks and Machine Learning ICANN 2023 written by Lazaros Iliadis and published by Springer Nature. This book was released on 2023-10-23 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023. The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.
Download or read book Neural Information Processing written by Irwin King and published by Springer Science & Business Media. This book was released on 2006-09-26 with total page 1225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNCS 4232, LNCS 4233, and LNCS 4234 constitutes the refereed proceedings of the 13th International Conference on Neural Information Processing, ICONIP 2006, held in Hong Kong, China in October 2006. The 386 revised full papers presented were carefully reviewed and selected from 1175 submissions.
Download or read book Neural Approximations for Optimal Control and Decision written by Riccardo Zoppoli and published by Springer Nature. This book was released on 2019-12-17 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Approximations for Optimal Control and Decision provides a comprehensive methodology for the approximate solution of functional optimization problems using neural networks and other nonlinear approximators where the use of traditional optimal control tools is prohibited by complicating factors like non-Gaussian noise, strong nonlinearities, large dimension of state and control vectors, etc. Features of the text include: • a general functional optimization framework; • thorough illustration of recent theoretical insights into the approximate solutions of complex functional optimization problems; • comparison of classical and neural-network based methods of approximate solution; • bounds to the errors of approximate solutions; • solution algorithms for optimal control and decision in deterministic or stochastic environments with perfect or imperfect state measurements over a finite or infinite time horizon and with one decision maker or several; • applications of current interest: routing in communications networks, traffic control, water resource management, etc.; and • numerous, numerically detailed examples. The authors’ diverse backgrounds in systems and control theory, approximation theory, machine learning, and operations research lend the book a range of expertise and subject matter appealing to academics and graduate students in any of those disciplines together with computer science and other areas of engineering.
Download or read book Complex valued Neural Networks written by Akira Hirose and published by World Scientific. This book was released on 2003 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.
Download or read book Neurocomputing written by James A. Anderson and published by MIT Press. This book was released on 1993-08-26 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: In bringing together seminal articles on the foundations of research, the first volume of Neurocomputing has become an established guide to the background of concepts employed in this burgeoning field. Neurocomputing 2 collects forty-one articles covering network architecture, neurobiological computation, statistics and pattern classification, and problems and applications that suggest important directions for the evolution of neurocomputing.James A. Anderson is Professor in the Department of Cognitive and Linguistic Sciences at Brown University. Andras Pellionisz is a Research Associate Professor in the Department of Physiology and Biophysics at New York Medical Center and a Senior National Research Council Associate to NASA. Edward Rosenfeld is editor and publisher of the newsletters Intelligence and Medical Intelligence.
Download or read book Complex Valued Neural Networks with Multi Valued Neurons written by Igor Aizenberg and published by Springer. This book was released on 2011-06-24 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.
Download or read book Algorithms Advances in Research and Application 2012 Edition written by and published by ScholarlyEditions. This book was released on 2012-12-26 with total page 2152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Algorithms. The editors have built Algorithms—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Algorithms in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Algorithms—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Advances in Neural Networks isnn 2006 written by and published by Springer Science & Business Media. This book was released on 2006 with total page 1507 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ridge Functions and Applications in Neural Networks written by Vugar E. Ismailov and published by American Mathematical Society. This book was released on 2021-12-17 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed a growth of interest in the special functions called ridge functions. These functions appear in various fields and under various guises. They appear in partial differential equations (where they are called plane waves), in computerized tomography, and in statistics. Ridge functions are also the underpinnings of many central models in neural network theory. In this book various approximation theoretic properties of ridge functions are described. This book also describes properties of generalized ridge functions, and their relation to linear superpositions and Kolmogorov's famous superposition theorem. In the final part of the book, a single and two hidden layer neural networks are discussed. The results obtained in this part are based on properties of ordinary and generalized ridge functions. Novel aspects of the universal approximation property of feedforward neural networks are revealed. This book will be of interest to advanced graduate students and researchers working in functional analysis, approximation theory, and the theory of real functions, and will be of particular interest to those wishing to learn more about neural network theory and applications and other areas where ridge functions are used.
Download or read book Knowledge based Neurocomputing written by Ian Cloete and published by MIT Press. This book was released on 2000 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada
Download or read book Bifurcation Theory and Spatio Temporal Pattern Formation written by Wayne Nagata and published by American Mathematical Soc.. This book was released on 2006-10-03 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear dynamical systems and the formation of spatio-temporal patterns play an important role in current research on partial differential equations. This book contains articles on topics of current interest in applications of dynamical systems theory to problems of pattern formation in space and time. Topics covered include aspects of lattice dynamical systems, convection in fluid layers with large aspect ratios, mixed mode oscillations and canards, bacterial remediation of waste, gyroscopic systems, data clustering, and the second part of Hilbert's 16th problem. Most of the book consists of expository survey material, and so can serve as a source of convenient entry points to current research topics in nonlinear dynamics and pattern formation. This volume arose from a workshop held at the Fields Institute in December of 2003, honoring Professor William F. Langford's fundamental work on the occasion of his sixtieth birthday. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.