Download or read book High Dimensional Data Analysis in Cancer Research written by Xiaochun Li and published by Springer Science & Business Media. This book was released on 2008-12-19 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
Download or read book Statistical Inference from High Dimensional Data written by Carlos Fernandez-Lozano and published by MDPI. This book was released on 2021-04-28 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Real-world problems can be high-dimensional, complex, and noisy • More data does not imply more information • Different approaches deal with the so-called curse of dimensionality to reduce irrelevant information • A process with multidimensional information is not necessarily easy to interpret nor process • In some real-world applications, the number of elements of a class is clearly lower than the other. The models tend to assume that the importance of the analysis belongs to the majority class and this is not usually the truth • The analysis of complex diseases such as cancer are focused on more-than-one dimensional omic data • The increasing amount of data thanks to the reduction of cost of the high-throughput experiments opens up a new era for integrative data-driven approaches • Entropy-based approaches are of interest to reduce the dimensionality of high-dimensional data
Download or read book Feature Selection for High Dimensional Data written by Verónica Bolón-Canedo and published by Springer. This book was released on 2015-10-05 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
Download or read book Applied Biclustering Methods for Big and High Dimensional Data Using R written by Adetayo Kasim and published by CRC Press. This book was released on 2016-08-18 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proven Methods for Big Data Analysis As big data has become standard in many application areas, challenges have arisen related to methodology and software development, including how to discover meaningful patterns in the vast amounts of data. Addressing these problems, Applied Biclustering Methods for Big and High-Dimensional Data Using R shows how to apply biclustering methods to find local patterns in a big data matrix. The book presents an overview of data analysis using biclustering methods from a practical point of view. Real case studies in drug discovery, genetics, marketing research, biology, toxicity, and sports illustrate the use of several biclustering methods. References to technical details of the methods are provided for readers who wish to investigate the full theoretical background. All the methods are accompanied with R examples that show how to conduct the analyses. The examples, software, and other materials are available on a supplementary website.
Download or read book The Bootstrap and Edgeworth Expansion written by Peter Hall and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book.
Download or read book Applications of Synthetic High Dimensional Data written by Sobczak-Michalowska, Marzena and published by IGI Global. This book was released on 2024-03-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.
Download or read book Massive Data Sets written by National Research Council and published by National Academies Press. This book was released on 1997-02-10 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Download or read book Statistical Data Analysis Based on the L1 Norm and Related Methods written by Yadolah Dodge and published by Birkhäuser. This book was released on 2012-12-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of invited papers, presented to the fourth International Conference on Statistical Data Analysis Based on the L1-Norm and Related Methods, held in Neuchâtel, Switzerland, from August 4–9, 2002. The contributions represent clear evidence to the importance of the development of theory, methods and applications related to the statistical data analysis based on the L1-norm.
Download or read book Inference for Functional Data with Applications written by Lajos Horváth and published by Springer Science & Business Media. This book was released on 2012-05-08 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
Download or read book Monte Carlo Simulation Based Statistical Modeling written by Ding-Geng (Din) Chen and published by Springer. This book was released on 2017-02-01 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Download or read book Multivariate Statistics written by Yasunori Fujikoshi and published by John Wiley & Sons. This book was released on 2011-08-15 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic tools and exact distributional results of multivariate statistics, and, in addition, the derivations of most distributional results are provided. Statistical methods for high-dimensional data, such as curve data, spectra, images, and DNA microarrays, are discussed. Bootstrap approximations from a methodological point of view, theoretical accuracies in MANOVA tests, and model selection criteria are also presented. Subsequent chapters feature additional topical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance in discriminant analysis, growth curve models, generalized linear models, profile analysis, and multiple comparison Each chapter provides real-world applications and thorough analyses of the real data. In addition, approximation formulas found throughout the book are a useful tool for both practical and theoretical statisticians, and basic results on exact distributions in multivariate analysis are included in a comprehensive, yet accessible, format. Multivariate Statistics is an excellent book for courses on probability theory in statistics at the graduate level. It is also an essential reference for both practical and theoretical statisticians who are interested in multivariate analysis and who would benefit from learning the applications of analytical probabilistic methods in statistics.
Download or read book Chemometrics with R written by Ron Wehrens and published by Springer Nature. This book was released on 2020-08-20 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers an accessible introduction to the world of multivariate statistics in the life sciences, providing a comprehensive description of the general data analysis paradigm, from exploratory analysis (principal component analysis, self-organizing maps and clustering) to modeling (classification, regression) and validation (including variable selection). It also includes a special section discussing several more specific topics in the area of chemometrics, such as outlier detection, and biomarker identification. The corresponding R code is provided for all the examples in the book; and scripts, functions and data are available in a separate R package. This second revised edition features not only updates on many of the topics covered, but also several sections of new material (e.g., on handling missing values in PCA, multivariate process monitoring and batch correction).
Download or read book Introduction to Functional Data Analysis written by Piotr Kokoszka and published by CRC Press. This book was released on 2017-09-27 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Download or read book Analyzing High Dimensional Gene Expression and DNA Methylation Data with R written by Hongmei Zhang and published by CRC Press. This book was released on 2020-05-14 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzing high-dimensional gene expression and DNA methylation data with R is the first practical book that shows a ``pipeline" of analytical methods with concrete examples starting from raw gene expression and DNA methylation data at the genome scale. Methods on quality control, data pre-processing, data mining, and further assessments are presented in the book, and R programs based on simulated data and real data are included. Codes with example data are all reproducible. Features: • Provides a sequence of analytical tools for genome-scale gene expression data and DNA methylation data, starting from quality control and pre-processing of raw genome-scale data. • Organized by a parallel presentation with explanation on statistical methods and corresponding R packages/functions in quality control, pre-processing, and data analyses (e.g., clustering and networks). • Includes source codes with simulated and real data to reproduce the results. Readers are expected to gain the ability to independently analyze genome-scaled expression and methylation data and detect potential biomarkers. This book is ideal for students majoring in statistics, biostatistics, and bioinformatics and researchers with an interest in high dimensional genetic and epigenetic studies.
Download or read book Fundamentals of Data Mining in Genomics and Proteomics written by Werner Dubitzky and published by Springer Science & Business Media. This book was released on 2007-04-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.
Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.