Download or read book Bayesian Statistics and Marketing written by Peter E. Rossi and published by John Wiley & Sons. This book was released on 2012-05-14 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.
Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Download or read book Hierarchical Linear Modeling written by G. David Garson and published by SAGE. This book was released on 2013 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Download or read book Advanced Methods for Modeling Markets written by Peter S. H. Leeflang and published by Springer. This book was released on 2017-08-29 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents advanced techniques to modeling markets, with a wide spectrum of topics, including advanced individual demand models, time series analysis, state space models, spatial models, structural models, mediation, models that specify competition and diffusion models. It is intended as a follow-on and companion to Modeling Markets (2015), in which the authors presented the basics of modeling markets along the classical steps of the model building process: specification, data collection, estimation, validation and implementation. This volume builds on the concepts presented in Modeling Markets with an emphasis on advanced methods that are used to specify, estimate and validate marketing models, including structural equation models, partial least squares, mixture models, and hidden Markov models, as well as generalized methods of moments, Bayesian analysis, non/semi-parametric estimation and endogeneity issues. Specific attention is given to big data. The market environment is changing rapidly and constantly. Models that provide information about the sensitivity of market behavior to marketing activities such as advertising, pricing, promotions and distribution are now routinely used by managers for the identification of changes in marketing programs that can improve brand performance. In today’s environment of information overload, the challenge is to make sense of the data that is being provided globally, in real time, from thousands of sources. Although marketing models are now widely accepted, the quality of the marketing decisions is critically dependent upon the quality of the models on which those decisions are based. This volume provides an authoritative and comprehensive review, with each chapter including: · an introduction to the method/methodology · a numerical example/application in marketing · references to other marketing applications · suggestions about software. Featuring contributions from top authors in the field, this volume will explore current and future aspects of modeling markets, providing relevant and timely research and techniques to scientists, researchers, students, academics and practitioners in marketing, management and economics.
Download or read book Bayesian Methods written by Jeff Gill and published by CRC Press. This book was released on 2007-11-26 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Bayesian Methods: A Social and Behavioral Sciences Approach helped pave the way for Bayesian approaches to become more prominent in social science methodology. While the focus remains on practical modeling and basic theory as well as on intuitive explanations and derivations without skipping steps, this second edition incorporates the latest methodology and recent changes in software offerings. New to the Second Edition Two chapters on Markov chain Monte Carlo (MCMC) that cover ergodicity, convergence, mixing, simulated annealing, reversible jump MCMC, and coupling Expanded coverage of Bayesian linear and hierarchical models More technical and philosophical details on prior distributions A dedicated R package (BaM) with data and code for the examples as well as a set of functions for practical purposes such as calculating highest posterior density (HPD) intervals Requiring only a basic working knowledge of linear algebra and calculus, this text is one of the few to offer a graduate-level introduction to Bayesian statistics for social scientists. It first introduces Bayesian statistics and inference, before moving on to assess model quality and fit. Subsequent chapters examine hierarchical models within a Bayesian context and explore MCMC techniques and other numerical methods. Concentrating on practical computing issues, the author includes specific details for Bayesian model building and testing and uses the R and BUGS software for examples and exercises.
Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book Hierarchical Modelling for the Environmental Sciences written by James Samuel Clark and published by Oxford University Press, USA. This book was released on 2006 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirement for a clear exposition of the methodology through to application for a range of environmental challenges.
Download or read book Data Analysis Using Regression and Multilevel Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Download or read book Bayes Rules written by Alicia A. Johnson and published by CRC Press. This book was released on 2022-03-03 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
Download or read book Bayesian Methods written by Jeff Gill and published by CRC Press. This book was released on 2014-12-11 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social ScientistsNow that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of th
Download or read book Bayesian Methods for Management and Business written by Eugene D. Hahn and published by John Wiley & Sons. This book was released on 2014-09-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: HIGHLIGHTS THE USE OF BAYESIAN STATISTICS TO GAIN INSIGHTS FROM EMPIRICAL DATA Featuring an accessible approach, Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems demonstrates how Bayesian statistics can help to provide insights into important issues facing business and management. The book draws on multidisciplinary applications and examples and utilizes the freely available software WinBUGS and R to illustrate the integration of Bayesian statistics within data-rich environments. Computational issues are discussed and integrated with coverage of linear models, sensitivity analysis, Markov Chain Monte Carlo (MCMC), and model comparison. In addition, more advanced models including hierarchal models, generalized linear models, and latent variable models are presented to further bridge the theory and application in real-world usage. Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems also features: Numerous real-world examples drawn from multiple management disciplines such as strategy, international business, accounting, and information systems An incremental skill-building presentation based on analyzing data sets with widely applicable models of increasing complexity An accessible treatment of Bayesian statistics that is integrated with a broad range of business and management issues and problems A practical problem-solving approach to illustrate how Bayesian statistics can help to provide insight into important issues facing business and management Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems is an important textbook for Bayesian statistics courses at the advanced MBA-level and also for business and management PhD candidates as a first course in methodology. In addition, the book is a useful resource for management scholars and practitioners as well as business academics and practitioners who seek to broaden their methodological skill sets.
Download or read book Bayesian Methods in Finance written by William Johnson and published by HiTeX Press. This book was released on 2024-10-16 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Bayesian Methods in Finance: Probabilistic Approaches to Market Uncertainty" offers an authoritative exploration of how Bayesian statistics can transform financial analysis into a more predictive and adaptive process. Within the rapidly evolving tapestry of global financial markets, the ability to quantify uncertainty and integrate diverse streams of information stands as a crucial advantage. This book expertly demystifies the intricate principles of Bayesian thinking, guiding readers through its application across a spectrum of financial contexts, from asset pricing to risk management and portfolio construction. Through a careful blend of theory and practical insights, it introduces the reader to Bayesian frameworks that eclipse traditional models in both flexibility and robustness, making them indispensable tools for modern investors and financial professionals. Readers will find a clear roadmap for navigating the complex landscape of market dynamics with the confidence that comes from sound, data-driven strategies. By integrating Bayesian approaches with machine learning, this text unlocks more nuanced analyses and predictive capabilities, catering to both novice learners and experienced market strategists. Rich with real-world case studies, each chapter not only illuminates techniques but also showcases their powerful applications in decision-making processes. Embark on a deep dive into the future of financial modeling, where the calculated embrace of uncertainty opens doors to innovative solutions and unparalleled insights.
Download or read book Applied Bayesian Statistics written by Mary Kathryn Cowles and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics, Marketing, Pharmacy, and Psychology. The goal of the book is to impart the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. In addition, readers will learn to use the predominant software for Bayesian model-fitting, R and OpenBUGS. The practical approach this book takes will help students of all levels to build understanding of the concepts and procedures required to answer real questions by performing Bayesian analysis of real data. Topics covered include comparing and contrasting Bayesian and classical methods, specifying hierarchical models, and assessing Markov chain Monte Carlo output. Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.
Download or read book Wiley International Encyclopedia of Marketing 6 Volume Set written by and published by John Wiley & Sons. This book was released on 2011-02-07 with total page 1775 pages. Available in PDF, EPUB and Kindle. Book excerpt: With over 300 entries from hundreds of global experts, this is one of the premier marketing reference resources available worldwide. The 6-volume WIEM provides scholars and professionals with an international guide to marketing concepts and applications The far-reaching new developments, challenges and opportunities that have arisen in recent years are fully reflected in the entries Scholars and professionals will enjoy the flexible, multi-level structure, with entries ranging from topics summaries to short essays reviewing areas of development and debate Entries are further extended by sophisticated cross-referencing both among volumes and between encyclopedia entries and external sources The encyclopedia is also available online For ease of reference, the entries are arranged alphabetically within each of the subject volumes. Designed to encompass the scope of modern marketing, the volumes cover: Volume 1: Marketing Strategy Volume 2: Marketing Research Volume 3: Consumer Behavior Volume 4: Advertising and Integrated Communication Volume 5: Product Innovation and Management Volume 6: International Marketing
Download or read book Handbook of Marketing Decision Models written by Berend Wierenga and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marketing models is a core component of the marketing discipline. The recent developments in marketing models have been incredibly fast with information technology (e.g., the Internet), online marketing (e-commerce) and customer relationship management (CRM) creating radical changes in the way companies interact with their customers. This has created completely new breeds of marketing models, but major progress has also taken place in existing types of marketing models. The HANDBOOK OF MARKETING DECISION MODELS presents the state of the art in marketing decision models, dealing with new modeling areas such as customer relationship management, customer value and online marketing, but also describes recent developments in other areas. In the category of marketing mix models, the latest models for advertising, sales promotions, sales management, and competition are dealt with. New developments are presented in consumer decision models, models for return on marketing, marketing management support systems, and in special techniques such as time series and neural nets. Not only are the most recent models discussed, but the book also pays attention to the implementation of marketing models in companies and to applications in specific industries.
Download or read book Review of Marketing Research written by Naresh Malhotra and published by Routledge. This book was released on 2017-10-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: First Published in 2017. Routledge is an imprint of Taylor & Francis, an Informa company.
Download or read book The Handbook of Marketing Research written by Rajiv Grover and published by SAGE. This book was released on 2006-06-23 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Marketing Research comprehensively explores the approaches for delivering market insights for fact-based decision making in a market-oriented firm.