EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Heterostructured Photocatalysts for Solar Energy Conversion

Download or read book Heterostructured Photocatalysts for Solar Energy Conversion written by Srabanti Ghosh and published by Elsevier. This book was released on 2020-10-10 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterostructured Photocatalysts for Solar Energy Conversion provides a comprehensive description of novel z-scheme hybrid materials based on metal oxide or chalcogenides-based semiconductor, or carbon-based nanomaterials (conducting polymers, graphene, and other carbon materials). The book explores energy conversion applications, such as hydrogen generation, water splitting, CO2 reduction or degradation of organic pollutants, and their associated new material and technology development. The book addresses a variety of topics, such as photochemical processes, materials and fabrication, degradation mechanisms, as well as challenges and strategies. The book includes in-depth discussions ranging from comprehensive understanding, to engineering of materials and applied devices. The concept of visible light active catalysis emerged in recent decades and continues to attract the scientific community. Driven primarily by an opportunity to develop novel multifunctional materials on one hand, and sustainable technologies on the other, several successful approaches have been explored. However, preparation, characterization, and application of visible light active Z-scheme heterojunction-based catalytic nanostructures are still at the foreground of research activity. - Provides an overview on recently developed Z-scheme photocatalysts to stress their performance as catalysts - Covers most of the important topics in photocatalysis - Explores the most recent advances in synthesis to enable deeper understanding of the principles underlying electronic behavior of catalytic nanostructures, mechanistic details, and the evaluation of their effectiveness, as well as perspectives in solar light harvesting - Serves as a valuable resource for better understanding of the current state of photocatalysis research and its possible applications in energy domain

Book New and Future Developments in Catalysis

Download or read book New and Future Developments in Catalysis written by W. David Wei and published by Elsevier Inc. Chapters. This book was released on 2013-07-19 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanotechnology for Hydrogen Production and Storage

Download or read book Nanotechnology for Hydrogen Production and Storage written by Kamel A. Abd-Elsalam and published by Elsevier. This book was released on 2024-03-27 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology for Hydrogen Production and Storage: Nanostructured Materials and Interfaces presents an evaluation of the various nano-based systems for hydrogen generation and storage. With a focus on the challenges and recent developments, the book analyses nanomaterials with the potential to boost hydrogen production and improve storage. The book assesses the potential improvements to industrially important hydrogen production technologies by the way of better surface-interface control through nanostructures of strategical composites of metal oxides, metal chalcogenides, plasmonic metals, conducting polymers, carbonaceous materials and bio-interfaces with different types of algae and bacteria. The efficiency of various photochemical water splitting processes to generate renewable hydrogen energy are reviewed, with a focus on natural water splitting via photosynthesis, and the use of various metallic and non-metallic nanomaterials in anthropogenic/artificial water splitting processes is analyzed. The potential of nanomaterials in enhancing hydrogen generation in dark- and photo-fermentative organisms is also explored. Finally, the book critically evaluates various nano-based systems for hydrogen generation, as well as significant challenges and recent advances in biohydrogen research and development. Nanotechnology for Hydrogen Production and Storage is a valuable reference for student and researchers working in renewable energy and interested in the production and storage of hydrogen and may be of interest to interdisciplinary researchers in the areas of environmental engineering, materials science, and biotechnology. - Synthesizes the latest advances in the field of nanoparticles for hydrogen production and storage, including new methods and industry applications - Explains various methods for the design of nanomaterials for hydrogen production and storage - Identifies the strengths and weaknesses of different nanomaterials and approaches - Explores hydrogen production via photocatalytic, electrocatalytic, and biological processes

Book Solar Fuel Generation

    Book Details:
  • Author : Yatendra S. Chaudhary
  • Publisher : CRC Press
  • Release : 2017-01-20
  • ISBN : 131535344X
  • Pages : 248 pages

Download or read book Solar Fuel Generation written by Yatendra S. Chaudhary and published by CRC Press. This book was released on 2017-01-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the search for renewable sources of energy grows more urgent, more and more attention is focusing on the blueprint offered by biological photosynthesis for translating the energy of our Sun into energy rich molecules like H2 and carbohydrates, commonly known as "solar fuels." These solar fuels have enormous potential to store high densities of energy in the form of chemical bonds as well as being transportable. This book offers a complete overview of the promising approaches to solar fuel generation, including the direct pathways of solar H2 generation and CO2 photocatalytic reduction. Solar Fuel Generation is an invaluable tool for graduate students and researchers (especially chemists, physicists, and material scientists) working in this field.

Book Semiconductor Solar Photocatalysts

Download or read book Semiconductor Solar Photocatalysts written by Jiaguo Yu and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a timely overview of basic principles and significant advances of semiconductor-based photocatalysts for solar energy conversion Semiconductor Solar Photocatalysts: Fundamentals and Applications presents a systematic, in-depth summary of both fundamental and cutting-edge research in novel photocatalytic systems. Focusing on photocatalysts with vast potential for efficient utilization of solar energy, this up-to-date volume covers heterojunction systems, graphene-based photocatalysts, organic semiconductor photocatalysts, metal sulfide semiconductor photocatalysts, and graphitic carbon nitride-based photocatalysts. Organized into six chapters, the text opens with a detailed introduction to the history, design principles, modification strategies, and performance evaluation methods of solar energy photocatalysis. The remaining chapters provide detailed discussion of various novel photocatalytic systems such as direct Z-scheme and S-scheme photocatalysts, organic polymers, and covalent organic frameworks. This authoritative resource: Explains the essential concepts of solar energy photocatalysis and heterojunction systems for photocatalysis Reviews interesting structures and new applications of semiconductor photocatalysts Features contributions from an international panel of leading researchers in the field Includes extensive references and numerous tables, figures, and color illustrations Semiconductor Solar Photocatalysts: Fundamentals and Applications is valuable resource for all catalytic chemists, materials scientists, inorganic and physical chemists, chemical engineers, and physicists working in the semiconductor industry.

Book Solar Energy Harvesting  Conversion  and Storage

Download or read book Solar Energy Harvesting Conversion and Storage written by Mohammad Khalid and published by Elsevier. This book was released on 2023-04-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Energy Harvesting, Conversion, and Storage: Materials, Technologies, and Applications focuses on the current state of solar energy and the recent advancements in nanomaterials for different technologies, from harnessing energy to storage. The book covers different aspects of advanced nanomaterials for solar energy, rapid developments in solar thermal and hot water systems, and PV and CSP technologies. In addition, sections cover storing harnessed solar/heat energy using different available energy storage technologies, including phase change materials (PCMs), batteries, and supercapacitors. Various applications such as agriculture and aquaculture, desalination, domestic appliances, and transport are also explored. - Provides an overview of solar energy harvesting technologies, energy storage technologies, and the role of advanced nanomaterials in solar energy - Explores applications of technology in the fields of agriculture, aquaculture, desalination and transport - Includes discussion of current policies, strategies and socioeconomic analysis and challenges

Book Sustainable Material Solutions for Solar Energy Technologies

Download or read book Sustainable Material Solutions for Solar Energy Technologies written by Mariana Amorim Fraga and published by Elsevier. This book was released on 2021-08-18 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. - Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage - Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy - Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis

Book New and Future Developments in Catalysis

Download or read book New and Future Developments in Catalysis written by Adriana Zaleska and published by Elsevier Inc. Chapters. This book was released on 2013-07-19 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanomaterials for Water Treatment and Remediation

Download or read book Nanomaterials for Water Treatment and Remediation written by Srabanti Ghosh and published by CRC Press. This book was released on 2021-12-29 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a comprehensive view of water-treatment technologies, Nanomaterials for Water Treatment and Remediation explores recent developments in the use of advanced nanomaterials (ANMs) for water treatment and remediation. In-depth reaction mechanisms in water-treatment technologies, including adsorption, catalysis, and membrane filtration for water purification using ANMs, are discussed in detail. The book includes an investigation of the fabrication processes of nanostructured materials and the fundamental aspects of surfaces at the nanoscale. The book also covers the removal of water-borne pathogens and microbes through a photochemical approach. FEATURES Explains various chemical treatments for the removal and separation of hazardous dyes, organic pollutants, pharmaceuticals, and heavy metals from aqueous solutions, including adsorption, advanced oxidation process, and photocatalysis Discusses the rational design of nanoporous materials with a tunable pore structure and fabrication of nanomaterials by surface chemistry engineering Covers the role of nanomaterials-assisted oxidation and reduction processes, design of nano-assisted membrane-based separation, and multifunctional nanomaterials and nanodevices for water treatment Provides an understanding of the structure–activity relationship and stability of ANMs under critical experimental conditions Identifies potential challenges in the application of multifunctional ANMs for future research Nanomaterials for Water Treatment and Remediation is aimed at researchers and industry professionals in chemical, materials, and environmental engineering as well as related fields interested in the application of advanced materials to water treatment and remediation.

Book Comprehensive Guide on Organic and Inorganic Solar Cells

Download or read book Comprehensive Guide on Organic and Inorganic Solar Cells written by Md. Akhtaruzzaman and published by Academic Press. This book was released on 2021-11-18 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology

Book Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water

Download or read book Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water written by Troy K. Townsend and published by Springer Science & Business Media. This book was released on 2014-03-19 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.

Book Photochemistry  Volume 51

    Book Details:
  • Author : Stefano Crespi
  • Publisher : Royal Society of Chemistry
  • Release : 2023-12-20
  • ISBN : 1837672156
  • Pages : 614 pages

Download or read book Photochemistry Volume 51 written by Stefano Crespi and published by Royal Society of Chemistry. This book was released on 2023-12-20 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Visible Light Active Photocatalysis

Download or read book Visible Light Active Photocatalysis written by Srabanti Ghosh and published by John Wiley & Sons. This book was released on 2018-03-23 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.

Book Sensing Technologies for Real Time Monitoring of Water Quality

Download or read book Sensing Technologies for Real Time Monitoring of Water Quality written by Libu Manjakkal and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the development and application of smart sensing technologies for water and food quality monitoring With contributions from a panel of experts on the topic, Sensing Technologies for Real Time Monitoring of Water Quality offers an authoritative resource that explores a complete set of sensing technologies designed to monitor, in real time, water and food (aquaculture) quality. The contributing authors explore the fundamentals of sensing technologies and review the most recent advances of various materials and sensors for water quality monitoring. This comprehensive resource includes information on a range of designs of smart electronics, communication systems, packaging, and innovative implementation approaches used for remote monitoring of water quality in various atmospheres. The book explores a variety of techniques for data analysis of the sensors as well as contains artificial intelligence, big data technologies, and machine learning approaches used for monitoring and evaluation. In addition, this indispensible resource highlights sustainable environmental and policy issues, including ways for food and water managers to can help to reduce their carbon footprint. This important book: Puts the spotlight on the potential capabilities and the limitations of various sensing technologies and wireless systems Offers an evaluation of a variety of sensing materials, substrates, and designs of sensors Includes information on the common characteristics, ideas, and approaches of water quality and quantity management Presents techniques for manager for reducing their carbon footprint Written for students and practitioners/researchers in food and water quality management, Sensing Technologies for Real Time Monitoring of Water Quality offers, in one volume, a guide to the real time sensing techniques that can improve water and food quality.

Book Surface Photovoltage Spectroscopy on Nanostructured Photocatalysts and Photovoltaic Thin films for Solar Energy Conversion

Download or read book Surface Photovoltage Spectroscopy on Nanostructured Photocatalysts and Photovoltaic Thin films for Solar Energy Conversion written by Benjamin Nail and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy conversion has the potential to reduce society’s dependence on fossil fuels and to diminish the harmful effects of climate change by generating clean power from the sun. The process of solar hydrogen production by photocatalytic water splitting uses solar energy to generate hydrogen fuels from water and has been explored extensively in recent years as hydrogen is considered a very promising candidate for a clean and renewable solar fuel. However, only a limited number of earth-abundant photocatalysts have been shown to be active for visible-light driven H2 evolution. New advances also continue in photovoltaic (PV) technologies such as hybrid solar cells, devices composed of inorganic semiconductor quantum dots (QDs) mixed with organic conducting polymers. This dissertation will focus on the application of Surface Photovoltage Spectroscopy (SPS) to study photochemical charge transfer processes in nanoscale photocatalysts and on the characterization of charge transfer dynamics occurring in inorganic-organic hybrid solar cell films. Chapter 2 explores a photocatalytic nickel oxide nanoparticle system modified with platinum co-catalyst for photochemical hydrogen generation. Nanocrystals of NiO have increased p-type character and improved photocatalytic activity for hydrogen evolution from water in the presence of methanol as sacrificial electron donor. Surface photovoltage spectroscopy of NiO and NiO–Pt films on Au substrates indicate a metal Pt-NiO junction with 30 mV photovoltage that promotes carrier separation. The increased photocatalytic and photoelectrochemical performance of nano-NiO is due to improved minority carrier extraction and increased p-type character, as deduced from Mott–Schottky plots, optical absorbance, and X-ray photoelectron spectroscopy data. These results are relevant to the understanding of NiO-containing photocatalysts and to the electronic properties of nanoscale metal oxides and junctions. In Chapter 3, surface photovoltage spectroscopy (SPS) was used to study the intrinsic charge transfer properties and surface states of thin films of thiol, amine, carboxylic acid supported CdSe QDs on indium tin oxide (ITO) in the absence of an external bias or electrolyte. On ITO, the QD films give positive or negative photovoltage signals (-120 to +350 mV) under sub band gap and super band gap excitation (0.1 - 0.3 mW cm−2), depending on the ligand type present at the QD surface. Experimental photovoltage values are found to correlate with the LUMO energies of the CdSe QDs, obtained from the electrochemical reduction potential in tetra-n-butylammonium hexafluorophosphate electrolyte at unadjusted pH. This suggests the possibility that the built-in potential of the ITO-QD Schottky contacts is controlled by the electronic properties of the ligands. The findings shed new light on factors controlling photochemical charge separation in films of ligand-stabilized CdSe QDs. Chapter 4 presents a study of a nanoscale doped perovskite photocatalyst, chromium-doped strontium titanate (Cr:SrTiO3). The Cr:SrTiO3 nanoparticles form as well defined cubic-shaped nanocrystals with a mean diameter of 43.5 nm (±18.8 nm) and have homogeneous composition. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analysis shows that Cr:SrTiO3 particles synthesized at high temperature contain high concentrations of Cr6+ trap sites while hydrothermally synthesized particles contain only Cr3+. SPS data shows that photogenerated charge carriers from Cr3+ donor states can drive photochemical reactions (e.g methanol oxidation) at the particle surface and that those reaction rates are increased by previous light excitation of the film. SPS also shows a dependence of photovoltage magnitude on substrate work function that is explained by the built-in potential (V[subscript bi]) at the film-substrate interface. Photochemical hydrogen evolution experiments show rates of up to 85 [mu]mol/hr (1.56% AQE at 435 nm). Rates are strongly dependent on solution pH, Cr doping %, and particle synthesis method. A mild NaBH4 reduction treatment was shown to increase photocatalytic activity in Cr:SrTiO3 and decrease its Cr6+ concentration. Surface photovoltage spectroscopy (SPS) also reveals an anomalously increasing photovoltage with magnitude greater than the band gap of SrTiO3. A model is proposed to show that the unusually large photovoltage, as well as charge separation in Cr:SrTiO3 in general, can be explained by a light-activated ferroelectric effect that causes ordering of electric dipoles in the non-centrosymmetric Cr:SrTiO3 unit cells.

Book Recent Developments in Functional Materials for Artificial Photosynthesis

Download or read book Recent Developments in Functional Materials for Artificial Photosynthesis written by Srabanti Ghosh and published by Royal Society of Chemistry. This book was released on 2023-03-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will give a comprehensive overview of recently developed, multifunctional materials as visible light-driven catalysts, their mechanisms and applications in solar energy utilization and conversion.

Book Photochemical Conversion and Storage of Solar Energy

Download or read book Photochemical Conversion and Storage of Solar Energy written by E. PELIZZETTI and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects the lectures and the status reports delivered during the "Eighth International Conference on Photochemical Conversion and Storage of Solar Energy", IPS-8, held in Palermo (Italy) from 15th to 20th of July 1990. As usual, the main theme of the Conference was that of making the point about the trends and the developments of the studies related to the photochemical exploitation of solar energy and also to report the main lines of potential applications. Therefore the contributions reflect this point; they vary from those reporting basic and fundamental theories to those reporting cases of possible applications. For the sake of following the logical line which links each other the various contributions, we report the six areas in which the main theme of the conference was devided: (a) Electron and energy transfer in homogeneous and heterogeneous systems; (b) Photosynthesis: organized assemblies and biomimetic systems; (c) Photoelectrochemistry; (d) Photocatalysis: homogeneous and heterogeneous regime; (e) Environment: photochemical and photocatalytic processes; (f) Solar energy materials and photochemical engineering. It remains now to thank persons and institutions which made possible the organization of the Conference. The persons to thank are all the members of the International and National Organizing Committees and in particular Prof. A.Sclafani and Dr. L.Palmisano whose efforts were essential for the success of the Conference.