EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Heavy Ion Inertial Fusion Energy

Download or read book Heavy Ion Inertial Fusion Energy written by and published by . This book was released on 2011 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass ≈100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at ≈10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

Book Energy from Inertial Fusion

Download or read book Energy from Inertial Fusion written by International Atomic Energy Agency and published by . This book was released on 1995 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication describes the current scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It provides an introduction to ICF as well as an overview of the various technologies needed for inertial fusion power plant development. It was compiled by an international group of experts under the auspices of an IAEA Advisory Group on Inertial Fusion Energy and is intended for a large audience, e.g. policy makers, scientists, engineers or technologists in other fields, and students.

Book An Assessment of the Prospects for Inertial Fusion Energy

Download or read book An Assessment of the Prospects for Inertial Fusion Energy written by Committee on the Prospects for Inertial Confinement Fusion Energy Systems and published by National Academies Press. This book was released on 2013-07-19 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Book Accelerators for Heavy Ion Inertial Fusion

Download or read book Accelerators for Heavy Ion Inertial Fusion written by and published by . This book was released on 1994 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy.

Book Progress in Heavy Ion Driven Inertial Fusion Energy

Download or read book Progress in Heavy Ion Driven Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ((almost equal to)100s Amperesheam) and ion energies ((almost equal to)1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

Book Inertial Fusion Driven by Intense Heavy Ion Beams

Download or read book Inertial Fusion Driven by Intense Heavy Ion Beams written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

Book The High Current Transport Experiment for Heavy Ion Inertial Fusion

Download or read book The High Current Transport Experiment for Heavy Ion Inertial Fusion written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density H"0.2 [mu]C/m) over long pulse durations (>4 ms) in alternating gradient electrostatic and magnetic quadrupoles. This experiment is testing--at driver-relevant scale--transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We present the results for a coasting 1 MeV K ion beam transported through the first ten electrostatic transport quadrupoles, measured with beam-imaging and phase-space diagnostics. The latest additions to the experiment include measurements of the secondary ion, electron and atom coefficients due to halo ions scraping the wall, and four magnetic quadrupoles to explore similar issues in magnetic channels.

Book Progress in Heavy Ion Driven Inertial Fusion Energy

Download or read book Progress in Heavy Ion Driven Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (approx 100's Amperes/beam) and ion energies ((almost equal to) 1 - 10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tun depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in the Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now beginning at LBNL. The mission of the HCX is to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an integrated test of the beam physics necessary for a driver, but in addition will provide target and chamber data. This paper will review the experimental and theoretical progress in heavy ion accelerator driver research from the scaled experiments through the present experiments and will discuss plans for the IRE.

Book Progress in Heavy Ion Drivers Inertial Fusion Energy

Download or read book Progress in Heavy Ion Drivers Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ((almost equal to)100's Amperes/beam) and ion energies ((almost equal to)1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an integrated test of the beam physics necessary for a driver, but in addition will provide target and chamber data. This paper will review the experimental and theoretical progress in heavy ion accelerator driver research from the scaled experiments through the present experiments and will discuss plans for the IRE.

Book Heavy ion Inertial Fusion

Download or read book Heavy ion Inertial Fusion written by and published by . This book was released on 1981 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Inertial-fusion targets have been designed for use with heavy-ion accelerators as drivers in fusion energy power plants. We have made an initial survey of target gain versus beam energy, power, focal radius, and ion range. This provides input for understanding the trade-offs among accelerator designs.

Book U S  Heavy Ion Beam Science Towards Inertial Fusion Energy

Download or read book U S Heavy Ion Beam Science Towards Inertial Fusion Energy written by and published by . This book was released on 2002 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.

Book Preliminary Results from a Scaled Final Focus Experiment for Heavy Ion Inertial Fusion

Download or read book Preliminary Results from a Scaled Final Focus Experiment for Heavy Ion Inertial Fusion written by and published by . This book was released on 1999 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vacuum ballistic focusing may be a straightforward method to obtain the heavy ion beam spot size necessary to drive an inertial confinement fusion target. Proper scaling of particle energy, mass, beam current, beam emittance, and magnetic field replicates the dynamics of a full driver beam in a small laboratory experiment. By expanding the beam and then focusing to a very small spot, the effects of aberrations and space charge on this method of final focus can be studied. To date, 200 [mu]A of 120keV K has been focused to test the matching and focusing elements. A recently designed high brightness contact ionization source is being tested for upcoming focusing measurements with an 87 [mu]A Cs beam that will duplicate the dynamics of a proposed driver design at one-tenth scale. Transverse phase space and beam current density at various stages of the focus will be presented. Follow-on measurements studying electron neutralization of space charge and its effect on the focus will be explored.

Book Heavy Ion Beam Propagation Through a Gas filled Chamber for Inertial Confinement Fusion

Download or read book Heavy Ion Beam Propagation Through a Gas filled Chamber for Inertial Confinement Fusion written by and published by . This book was released on 1996 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of (approximately)17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, (approximately)200 g/cm3 and (approximately)20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases (approximately)350 MJ of energy in optimized power plant scenarios.

Book Heavy ion inertial fusion

    Book Details:
  • Author : HEAVY ION INERTIAL FUSION.
  • Publisher :
  • Release : 1986
  • ISBN : 9780883183526
  • Pages : 0 pages

Download or read book Heavy ion inertial fusion written by HEAVY ION INERTIAL FUSION. and published by . This book was released on 1986 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book US Heavy Ion Beam Research for Energy Density Physics Applicationsand Fusion

Download or read book US Heavy Ion Beam Research for Energy Density Physics Applicationsand Fusion written by J. E. Coleman and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.