Download or read book Harmonic Wave Systems Partial Differential Equations of the Helmholtz Decomposition written by Victor A. Miroshnikov and published by Scientific Research Publishing, Inc. USA. This book was released on 2017-12-15 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic Wave Systems is the first textbook about the computational method of Decomposition in Invariant Structures (DIS) that generalizes the analytical methods of separation of variables, undetermined coefficients, asymptotic expansions, and series expansions. In recent years, there has been a boom in publications on propagation of nonlinear waves described by a fascinating list of partial differential equations (PDEs). The vast majority of wave problems are reducible to one-dimensional ones in propagation variables. However, a list of publications with two- and three-dimensional applications of the DIS method is brief. The book offers a comprehensive and rigorous treatment of the DIS method in two and three dimensions using the PDE approach to the Helmholtz decomposition that provides the most general background for mathematical modelling of harmonic waves in fluid dynamics, electrodynamics, heat transfer, and other numerous areas of science and engineering, which are dealing with propagation and interaction of N internal waves.
Download or read book Wave Propagation in Solid and Porous Half Space Media written by Hamid R. Hamidzadeh and published by Springer Science & Business. This book was released on 2014-04-26 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.
Download or read book Control Of Nonlinear Distributed Parameter Systems written by Goong Chen and published by CRC Press. This book was released on 2001-03-14 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics and its Applications, the University of Minnesota, and Texas A&M University.
Download or read book Partial Differential Equations written by J. Necas and published by Routledge. This book was released on 2018-05-04 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a satellite conference of the 1998 International Mathematical Congress and part of the celebration of the 650th anniversary of Charles University, the Partial Differential Equations Theory and Numerical Solution conference was held in Prague in August, 1998. With its rich scientific program, the conference provided an opportunity for almost 200 participants to gather and discuss emerging directions and recent developments in partial differential equations (PDEs). This volume comprises the Proceedings of that conference. In it, leading specialists in partial differential equations, calculus of variations, and numerical analysis present up-to-date results, applications, and advances in numerical methods in their fields. Conference organizers chose the contributors to bring together the scientists best able to present a complex view of problems, starting from the modeling, passing through the mathematical treatment, and ending with numerical realization. The applications discussed include fluid dynamics, semiconductor technology, image analysis, motion analysis, and optimal control. The importance and quantity of research carried out around the world in this field makes it imperative for researchers, applied mathematicians, physicists and engineers to keep up with the latest developments. With its panel of international contributors and survey of the recent ramifications of theory, applications, and numerical methods, Partial Differential Equations: Theory and Numerical Solution provides a convenient means to that end.
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book An Introduction to Domain Decomposition Methods written by Victorita Dolean and published by SIAM. This book was released on 2015-12-08 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.
Download or read book Domain Decomposition Methods 10 written by Jan Mandel and published by American Mathematical Soc.. This book was released on 1998 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.
Download or read book Applied Partial Differential Equations An Introduction written by Alan Jeffrey and published by Academic Press. This book was released on 2003 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available
Download or read book Mathematics of Wave Phenomena written by Willy Dörfler and published by Springer Nature. This book was released on 2020-10-01 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1987 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advanced Mathematics for Applications written by Andrea Prosperetti and published by Cambridge University Press. This book was released on 2011-01-06 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.
Download or read book Fundamentals of Partial Differential Equations written by Atul Kumar Razdan and published by Springer Nature. This book was released on 2022-04-02 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a primary textbook of partial differential equations (PDEs), with due attention to their importance to various physical and engineering phenomena. The book focuses on maintaining a balance between the mathematical expressions used and the significance they hold in the context of some physical problem. The book has wider outreach as it covers topics relevant to many different applications of ordinary differential equations (ODEs), PDEs, Fourier series, integral transforms, and applications. It also discusses applications of analytical and geometric methods to solve some fundamental PDE models of physical phenomena such as transport of mass, momentum, and energy. As far as possible, historical notes are added for most important developments in science and engineering. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
Download or read book Imaging Multi scale and High Contrast Partial Differential Equations written by Habib Ammari and published by American Mathematical Soc.. This book was released on 2016-03-23 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Seoul ICM 2014 Satellite Conference on Imaging, Multi-scale and High-Contrast PDEs, held from August 7-9, 2014, in Daejeon, Korea. The mathematical analysis of partial differential equations modelling materials, or tissues, presenting multiple scales has been a very active area of research. The study of the corresponding imaging or reconstruction problem is a more recent area. If the material parameters of the partial differential equation present high contrast ratio, then the solution to the PDE becomes particularly challenging to analyze and compute. On the other hand, imaging in highly heterogeneous media poses significant challenges to the mathematical community. The focus of this volume is on recent progress towards complete understanding of the direct problem with high contrast or high frequencies, and unified approaches to the inverse and imaging problems for both small and large contrast or frequencies. Of particular importance in imaging are shape representation techniques and regularization approaches. Special attention is devoted to new models and problems coming from physics leading to innovative imaging and signal processing methods.
Download or read book Elements of Partial Differential Equations written by Ian N. Sneddon and published by Courier Corporation. This book was released on 2013-01-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text features numerous worked examples in its presentation of elements from the theory of partial differential equations, emphasizing forms suitable for solving equations. Solutions to odd-numbered problems appear at the end. 1957 edition.
Download or read book Partial Differential Equations written by Rustum Choksi and published by American Mathematical Society. This book was released on 2022-04-04 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: While partial differential equations (PDEs) are fundamental in mathematics and throughout the sciences, most undergraduate students are only exposed to PDEs through the method of separation of variations. This text is written for undergraduate students from different cohorts with one sole purpose: to facilitate a proficiency in many core concepts in PDEs while enhancing the intuition and appreciation of the subject. For mathematics students this will in turn provide a solid foundation for graduate study. A recurring theme is the role of concentration as captured by Dirac's delta function. This both guides the student into the structure of the solution to the diffusion equation and PDEs involving the Laplacian and invites them to develop a cognizance for the theory of distributions. Both distributions and the Fourier transform are given full treatment. The book is rich with physical motivations and interpretations, and it takes special care to clearly explain all the technical mathematical arguments, often with pre-motivations and post-reflections. Through these arguments the reader will develop a deeper proficiency and understanding of advanced calculus. While the text is comprehensive, the material is divided into short sections, allowing particular issues/topics to be addressed in a concise fashion. Sections which are more fundamental to the text are highlighted, allowing the instructor several alternative learning paths. The author's unique pedagogical style also makes the text ideal for self-learning.
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Download or read book Partial Differential Equations of Mathematical Physics and Integral Equations written by Ronald B. Guenther and published by Courier Corporation. This book was released on 2012-09-19 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superb treatment for math and physical science students discusses modern mathematical techniques for setting up and analyzing problems. Discusses partial differential equations of the 1st order, elementary modeling, potential theory, parabolic equations, more. 1988 edition.