EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Harmonic Maps of Manifolds with Boundary

Download or read book Harmonic Maps of Manifolds with Boundary written by R.S. Hamilton and published by Springer. This book was released on 2006-11-15 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Harmonic Maps of Manifolds with Boundary

Download or read book Harmonic Maps of Manifolds with Boundary written by Richard S. Hamilton and published by Springer. This book was released on 1975-01-01 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Reports on Harmonic Maps

Download or read book Two Reports on Harmonic Maps written by James Eells and published by World Scientific. This book was released on 1995 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and K„hlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.

Book Contact Manifolds in Riemannian Geometry

Download or read book Contact Manifolds in Riemannian Geometry written by D. E. Blair and published by Springer. This book was released on 2006-11-14 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selected Topics in Harmonic Maps

Download or read book Selected Topics in Harmonic Maps written by James Eells and published by American Mathematical Soc.. This book was released on 1983 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an account of the various aspects of the theory of harmonic maps between Riemannian manifolds. This book presents an exposition of the qualitative aspects of harmonic maps. It also proposes certain unsolved problems, together with comments and references, which are of widely varying difficulty.

Book Geometry of Harmonic Maps

    Book Details:
  • Author : Yuanlong Xin
  • Publisher : Springer Science & Business Media
  • Release : 1996-04-30
  • ISBN : 9780817638207
  • Pages : 264 pages

Download or read book Geometry of Harmonic Maps written by Yuanlong Xin and published by Springer Science & Business Media. This book was released on 1996-04-30 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.

Book The Analysis of Harmonic Maps and Their Heat Flows

Download or read book The Analysis of Harmonic Maps and Their Heat Flows written by Fanghua Lin and published by World Scientific. This book was released on 2008 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral mesons, particle-antiparticle comparisons, post-Newtonian gravity, space-based missions, spectroscopy of hydrogen and antihydrogen, and spin-polarized matter.Theoretical topics covered include: physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; and associated issues in field theory, particle physics, gravity, and string theory. The contributors consist of the leading experts in this very active research field.

Book Lectures on Harmonic Maps

Download or read book Lectures on Harmonic Maps written by Richard M. Schoen and published by International Press of Boston. This book was released on 1997 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A presentation of research on harmonic maps, based on lectures given at the University of California, San Diego. Schoen has worked to use the Fells/Sampson theorem to reprove the rigidity theorem of Masfow and superrigidity theorem of Marqulis. Many of these developments are recorded here.

Book Harmonic Maps Between Surfaces

Download or read book Harmonic Maps Between Surfaces written by Jürgen Jost and published by Springer. This book was released on 2006-12-08 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Harmonic Maps Between Riemannian Polyhedra

Download or read book Harmonic Maps Between Riemannian Polyhedra written by James Eells and published by Cambridge University Press. This book was released on 2001-07-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A research level book on harmonic maps between singular spaces, by renowned authors, first published in 2001.

Book Harmonic Mappings Into Manifolds with Boundary

Download or read book Harmonic Mappings Into Manifolds with Boundary written by Y. M. Chen and published by . This book was released on 1989 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometry of Harmonic Maps

Download or read book Geometry of Harmonic Maps written by Yuanlong Xin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.

Book Harmonic Mappings Between Riemannian Manifolds

Download or read book Harmonic Mappings Between Riemannian Manifolds written by Jürgen Jost and published by . This book was released on 1984 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Harmonic Maps

    Book Details:
  • Author : James Eells
  • Publisher : World Scientific
  • Release : 1992
  • ISBN : 9789810207045
  • Pages : 472 pages

Download or read book Harmonic Maps written by James Eells and published by World Scientific. This book was released on 1992 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: These original research papers, written during a period of over a quarter of a century, have two main objectives. The first is to lay the foundations of the theory of harmonic maps between Riemannian Manifolds, and the second to establish various existence and regularity theorems as well as the explicit constructions of such maps.

Book Handbook of Global Analysis

Download or read book Handbook of Global Analysis written by Demeter Krupka and published by Elsevier. This book was released on 2011-08-11 with total page 1243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

Book Harmonic Mappings  Twistors And Sigma Models

Download or read book Harmonic Mappings Twistors And Sigma Models written by Paul Gauduchon and published by World Scientific. This book was released on 1988-10-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic mappings have played in recent years and will likely to play in the future an important role in Differential Geometry and Theoretical Physics, where they are known as s-models. These Proceedings develop both aspects of the theory, with a special attention to the constructive methods, in particular the so-called twistorial approach. It includes expository articles on the twistorial methods, the various appearence of σ-models in Physics, the powerful analytic theory of regularity of SCHOEN-UHLENBECK.

Book Two Reports On Harmonic Maps

Download or read book Two Reports On Harmonic Maps written by James Eells and published by World Scientific. This book was released on 1995-03-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.