EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hardy Spaces and Potential Theory on C superscript 1  Domains in Riemannian Manifolds

Download or read book Hardy Spaces and Potential Theory on C superscript 1 Domains in Riemannian Manifolds written by Martin Dindoš and published by . This book was released on 2014-09-11 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies Hardy spaces on $C DEGREES1$ and Lipschitz domains in Riemannian manifolds. The author establishes this theorem in any dimension if the domain is $C DEGREES1$, in case of a Lipschitz domain the result holds if dim $M\le 3$. The remaining cases for Lipschitz domain

Book Causal Symmetric Spaces

Download or read book Causal Symmetric Spaces written by Gestur Olafsson and published by Academic Press. This book was released on 1996-09-11 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

Book Eigenfunctions of the Laplacian on a Riemannian Manifold

Download or read book Eigenfunctions of the Laplacian on a Riemannian Manifold written by Steve Zelditch and published by American Mathematical Soc.. This book was released on 2017-12-12 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Book Characteristic Classes

    Book Details:
  • Author : John Willard Milnor
  • Publisher : Princeton University Press
  • Release : 1974
  • ISBN : 9780691081229
  • Pages : 342 pages

Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Book Geometric Integration Theory

Download or read book Geometric Integration Theory written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

Book The Radon Transform

    Book Details:
  • Author : Sigurdur Helgason
  • Publisher : Springer Science & Business Media
  • Release : 1999-08-01
  • ISBN : 9780817641092
  • Pages : 214 pages

Download or read book The Radon Transform written by Sigurdur Helgason and published by Springer Science & Business Media. This book was released on 1999-08-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

Book Classical and Modern Potential Theory and Applications

Download or read book Classical and Modern Potential Theory and Applications written by K. GowriSankaran and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, Château de Bonas, France, July 25--31, 1993

Book Strings and Geometry

    Book Details:
  • Author : Clay Mathematics Institute. Summer School
  • Publisher : American Mathematical Soc.
  • Release : 2004
  • ISBN : 9780821837153
  • Pages : 396 pages

Download or read book Strings and Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2004 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Book Theory of the Navier Stokes Equations

Download or read book Theory of the Navier Stokes Equations written by John Groves Heywood and published by World Scientific. This book was released on 1998 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the articles presented at the Third International Conference on ?The Navier-Stokes Equations: Theory and Numerical Methods?, held in Oberwolfach, Germany. The articles are important contributions to a wide variety of topics in the Navier-Stokes theory: general boundary conditions, flow exterior to an obstacle, conical boundary points, the controllability of solutions, compressible flow, non-Newtonian flow, magneto-hydrodynamics, thermal convection, the interaction of fluids with elastic solids, the regularity of solutions, and Rothe's method of approximation.

Book Elliptic Boundary Problems for Dirac Operators

Download or read book Elliptic Boundary Problems for Dirac Operators written by Bernhelm Booß-Bavnbek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.

Book Geometric Analysis on Symmetric Spaces

Download or read book Geometric Analysis on Symmetric Spaces written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2024-09-27 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations?that is, representations on solution spaces of invariant differential equations. Known for his high-quality expositions, Helgason received the 1988 Steele Prize for his earlier books Differential Geometry, Lie Groups and Symmetric Spaces and Groups and Geometric Analysis. Containing exercises (with solutions) and references to further results, this revised edition would be suitable for advanced graduate courses in modern integral geometry, analysis on Lie groups, and representation theory of Lie groups.

Book Riemann Surfaces of Infinite Genus

Download or read book Riemann Surfaces of Infinite Genus written by Joel S. Feldman and published by American Mathematical Soc.. This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors geometrically construct Riemann surfaces of infinite genus by pasting together plane domains and handles. To achieve a meaningful generalization of the classical theory of Riemann surfaces to the case of infinite genus, one must impose restrictions on the asymptotic behavior of the Riemann surface. In the construction carried out here, these restrictions are formulated in terms of the sizes and locations of the handles and in terms of the gluing maps. The approach used has two main attractions. The first is that much of the classical theory of Riemann surfaces, including the Torelli theorem, can be generalized to this class. The second is that solutions of Kadomcev-Petviashvilli equations can be expressed in terms of theta functions associated with Riemann surfaces of infinite genus constructed in the book. Both of these are developed here. The authors also present in detail a number of important examples of Riemann surfaces of infinite genus (hyperelliptic surfaces of infinite genus, heat surfaces and Fermi surfaces). The book is suitable for graduate students and research mathematicians interested in analysis and integrable systems.

Book A Dynamical Approach to Random Matrix Theory

Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Book Expansion in Finite Simple Groups of Lie Type

Download or read book Expansion in Finite Simple Groups of Lie Type written by Terence Tao and published by American Mathematical Soc.. This book was released on 2015-04-16 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

Book Groups and Geometric Analysis

Download or read book Groups and Geometric Analysis written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2022-03-17 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.

Book Approximation  Complex Analysis  and Potential Theory

Download or read book Approximation Complex Analysis and Potential Theory written by Norair Arakelian and published by Springer Science & Business Media. This book was released on 2001-09-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians.

Book Nonlinear Analysis on Manifolds  Monge Amp  re Equations

Download or read book Nonlinear Analysis on Manifolds Monge Amp re Equations written by Thierry Aubin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis.