Download or read book Hardy Operators Function Spaces and Embeddings written by David E. Edmunds and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries. The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the literature. Accordingly, the main themes of this book are Banach spaces and spaces of Sobolev type based on them; integral operators of Hardy type on intervals and on trees; and the distribution of the approximation numbers (singular numbers in the Hilbert space case) of embeddings of Sobolev spaces based on generalised ridged domains. This timely book will be of interest to all those concerned with the partial differential equations and their ramifications. A prerequisite for reading it is a good graduate course in real analysis.
Download or read book Hardy Operators Function Spaces and Embeddings written by David E Edmunds and published by Springer. This book was released on 2014-01-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Function Spaces of Logarithmic Smoothness Embeddings and Characterizations written by Óscar Domínguez and published by American Mathematical Society. This book was released on 2023-02-13 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Download or read book Eigenvalues Embeddings and Generalised Trigonometric Functions written by Jan Lang and published by Springer Science & Business Media. This book was released on 2011-03-23 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian.
Download or read book Fractional Sobolev Spaces and Inequalities written by D. E. Edmunds and published by Cambridge University Press. This book was released on 2022-10-31 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an account of fractional Sobolev spaces emphasising applications to famous inequalities. Ideal for graduates and researchers.
Download or read book Spectral Theory Function Spaces and Inequalities written by B. Malcolm Brown and published by Springer Science & Business Media. This book was released on 2011-11-06 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
Download or read book Function Spaces and Inequalities written by Pankaj Jain and published by Springer. This book was released on 2017-10-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
Download or read book Analysis on Function Spaces of Musielak Orlicz Type written by Osvaldo Mendez and published by CRC Press. This book was released on 2019-01-21 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak–Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent. Features Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful Contains numerous applications Facilitates the unified treatment of seemingly different theoretical and applied problems Includes a number of open problems in the area
Download or read book Spectral Theory and Differential Operators written by David Eric Edmunds and published by Oxford University Press. This book was released on 2018 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Download or read book Elliptic Differential Operators and Spectral Analysis written by D. E. Edmunds and published by Springer. This book was released on 2018-11-20 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.
Download or read book Integral Operators in Non Standard Function Spaces written by Vakhtang Kokilashvili and published by Birkhäuser. This book was released on 2016-05-11 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
Download or read book The Analysis and Geometry of Hardy s Inequality written by Alexander A. Balinsky and published by Springer. This book was released on 2015-10-20 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.
Download or read book Foundations of Symmetric Spaces of Measurable Functions written by Ben-Zion A. Rubshtein and published by Springer. This book was released on 2016-12-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.
Download or read book Function Spaces and Wavelets on Domains written by Hans Triebel and published by European Mathematical Society. This book was released on 2008 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelets have emerged as an important tool in analyzing functions containing discontinuities and sharp spikes. They were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, earthquake prediction, and pure mathematics applications such as solving partial differential equations. This book develops a theory of wavelet bases and wavelet frames for function spaces on various types of domains. Starting with the usual spaces on Euclidean spaces and their periodic counterparts, the exposition moves on to so-called thick domains (including Lipschitz domains and snowflake domains). Specifically, wavelet expansions and extensions to corresponding spaces on Euclidean $n$-spaces are developed. Finally, spaces on smooth and cellular domains and related manifolds are treated. Although the presentation relies on the recent theory of function spaces, basic notation and classical results are repeated in order to make the text self-contained. This book is addressed to two types of readers: researchers in the theory of function spaces who are interested in wavelets as new effective building blocks for functions and scientists who wish to use wavelet bases in classical function spaces for various applications. Adapted to the second type of reader, the preface contains a guide on where to find basic definitions and key assertions.
Download or read book Special Functions Partial Differential Equations and Harmonic Analysis written by Constantine Georgakis and published by Springer. This book was released on 2014-11-07 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of papers presented at the conference in honor of Calixto P. Calderón by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.
Download or read book Hardy Inequalities on Homogeneous Groups written by Michael Ruzhansky and published by Springer. This book was released on 2019-07-02 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.