Download or read book Handbook of Trustworthy Federated Learning written by My T. Thai and published by Springer Nature. This book was released on with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook on Federated Learning written by Saravanan Krishnan and published by CRC Press. This book was released on 2024-01-09 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects.
Download or read book Handbook on Blockchain written by Duc A. Tran and published by Springer Nature. This book was released on 2022-11-04 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook aims to serve as a one-stop, reliable source of reference, with curations of survey and expository contributions on the state-of-the-art in Blockchain technology. It covers a comprehensive range of topics, providing the technical and non-technical reader with fundamentals, applications, and deep details on a variety of topics. The readership is expected to span broadly from technologically-minded business professionals and entrepreneurs, to students, instructors, novices and seasoned researchers, in computer science, engineering, software engineering, finance, and data science. Though Blockchain technology is relatively young, its evolution as a field and a practice is booming in growth and its importance to society had never been more important than it is today. Blockchain solutions enable a decentralization of a digital society where people can contribute, collaborate, and transact without having to second-guess the trust and transparency factors with many geographical, financial, and political barriers removed. It is the distributed ledger technology behind the success of Bitcoin, Ethereum, and many emerging applications. The resource is divided into 5 parts. Part 1 (Foundation) walks the reader through a comprehensive set of essential concepts, protocols, and algorithms that lay the foundation for Blockchain. Part 2 (Scalability) focuses on the most pressing challenges of today’s blockchain networks in how to keep pace with real-world expectations. Part 3 (Trust and Security) provides detailed coverage on the issues of trust, reputation, and security in Blockchain. Part 4 (Decentralized Finance) is devoted to a high-impact application of Blockchain to finance, the sector that has most benefitted from this technology. Part 5 (Application and Policy) includes several cases where Blockchain applies to the real world.
Download or read book Handbook of Research on AI Equipped IoT Applications in High Tech Agriculture written by Khang, Alex and published by IGI Global. This book was released on 2023-08-02 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The agriculture industry is facing significant challenges in meeting the increasing demand for food while also ensuring sustainable development. Traditional agricultural methods are not equipped to meet the demands of the modern world. To overcome these challenges, Advanced Technologies and AI-Equipped IoT Applications in High-Tech Agriculture provides an in-depth analysis of the opportunities and challenges for AI-powered management tools and IoT-equipped techniques for the high-tech agricultural ecosystem. The Handbook of Research on AI-Equipped IoT Applications in High-Tech Agriculture explores advanced methodologies, models, techniques, technologies, and applications along with the concepts of real-time supporting systems to help agricultural producers adjust plans or schedules for taking care of their farms. Additionally, it discusses the role of IoT technologies and AI applications in agricultural ecosystems and their potential to improve product quality and market competitiveness. The book includes discussions on the application of blockchain, biotechnology, drones, robotics, data analytics, and visualization in high-tech agriculture. It is an essential reference for anyone interested in the future of high-tech agriculture, including agricultural analysts, investment analysts, scholars, researchers, academics, professionals, engineers, and students.
Download or read book A Handbook of Computational Linguistics Artificial Intelligence in Natural Language Processing written by Youddha Beer Singh and published by Bentham Science Publishers. This book was released on 2024-08-12 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive understanding of computational linguistics, focusing on the integration of deep learning in natural language processing (NLP). 18 edited chapters cover the state-of-the-art theoretical and experimental research on NLP, offering insights into advanced models and recent applications. Highlights: - Foundations of NLP: Provides an in-depth study of natural language processing, including basics, challenges, and applications. - Advanced NLP Techniques: Explores recent advancements in text summarization, machine translation, and deep learning applications in NLP. - Practical Applications: Demonstrates use cases on text identification from hazy images, speech-to-sign language translation, and word sense disambiguation using deep learning. - Future Directions: Includes discussions on the future of NLP, including transfer learning, beyond syntax and semantics, and emerging challenges. Key Features: - Comprehensive coverage of NLP and deep learning integration. - Practical insights into real-world applications - Detailed exploration of recent research and advancements through 16 easy to read chapters - References and notes on experimental methods used for advanced readers Ideal for researchers, students, and professionals, this book offers a thorough understanding of computational linguistics by equipping readers with the knowledge to understand how computational techniques are applied to understand text, language and speech.
Download or read book Federated Learning and Privacy Preserving in Healthcare AI written by Lilhore, Umesh Kumar and published by IGI Global. This book was released on 2024-05-02 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.
Download or read book Research Handbook on Big Data Law written by Roland Vogl and published by Edward Elgar Publishing. This book was released on 2021-05-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art Research Handbook provides an overview of research into, and the scope of current thinking in, the field of big data analytics and the law. It contains a wealth of information to survey the issues surrounding big data analytics in legal settings, as well as legal issues concerning the application of big data techniques in different domains.
Download or read book Demystifying Federated Learning for Blockchain and Industrial Internet of Things written by Kautish, Sandeep and published by IGI Global. This book was released on 2022-06-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, mobile technology and the internet of objects have been used in mobile networks to meet new technical demands. Emerging needs have centered on data storage, computation, and low latency management in potentially smart cities, transport, smart grids, and a wide number of sustainable environments. Federated learning’s contributions include an effective framework to improve network security in heterogeneous industrial internet of things (IIoT) environments. Demystifying Federated Learning for Blockchain and Industrial Internet of Things rediscovers, redefines, and reestablishes the most recent applications of federated learning using blockchain and IIoT to optimize data for next-generation networks. It provides insights to readers in a way of inculcating the theme that shapes the next generation of secure communication. Covering topics such as smart agriculture, object identification, and educational big data, this premier reference source is an essential resource for computer scientists, programmers, government officials, business leaders and managers, students and faculty of higher education, researchers, and academicians.
Download or read book Handbook of Security and Privacy of AI Enabled Healthcare Systems and Internet of Medical Things written by Agbotiname Lucky Imoize and published by CRC Press. This book was released on 2023-10-25 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast-growing number of patients suffering from various ailments has overstretched the carrying capacity of traditional healthcare systems. This handbook addresses the increased need to tackle security issues and preserve patients’ privacy concerns in Artificial Intelligence of Medical Things (AIoMT) devices and systems. Handbook of Security and Privacy of AI-Enabled Healthcare Systems and the Internet of Medical Things provides new insights into the deployment, application, management, and benefits of AIoMT by examining real-world scenarios. The handbook takes a critical look at existing security designs and offers solutions to revamp traditional security architecture, including the new design of effi cient intrusion detection algorithms, attack prevention techniques, and both cryptographic and noncryptographic solutions. The handbook goes on to discuss the critical security and privacy issues that affect all parties in the healthcare ecosystem and provides practical AI-based solutions. This handbook offers new and valuable information that will be highly beneficial to educators, researchers, and others.
Download or read book Handbook of Research on Design Deployment Automation and Testing Strategies for 6G Mobile Core Network written by Kumar, D. Satish and published by IGI Global. This book was released on 2022-03-04 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: To overcome the constraints of 5G for supporting new challenges, 6G wireless systems must be developed with new and attractive features. These systems are expected to increase performance and maximize quality of service several folds more than 5G along with other exciting features. However, 6G is still in its infancy and must be explored. The Handbook of Research on Design, Deployment, Automation, and Testing Strategies for 6G Mobile Core Network discusses the technological feats used in the new 6G wireless systems. It discusses the design, automation, and uses for industry as well as testing strategies. Covering topics such as 6G architecture, smart healthcare, and wireless communication, this major reference work is an excellent resource for computer scientists, engineers, students and professors in higher education, researchers, and academicians.
Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Download or read book Handbook of Deep Learning in Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2020-11-12 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Download or read book Towards Ethical and Socially Responsible Explainable AI written by Mohammad Amir Khusru Akhtar and published by Springer Nature. This book was released on with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Developments Towards Next Generation Intelligent Systems for Sustainable Development written by Sharma, Shanu and published by IGI Global. This book was released on 2024-04-04 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid proliferation of connected devices in our daily lives, from smart homes to industrial sensors, has led to an explosion of data that requires processing before it is useful to experts. However, modern devices often have limited resources, making it challenging to decode and utilize this data effectively. Additionally, the need for real-time decision-making further complicates this issue, as traditional data processing methods take far too long to be able to keep up with the required volume and speed. Developments Towards Next Generation Intelligent Systems for Sustainable Development offers a comprehensive solution to these challenges by integrating novel technologies such as AI, edge computing, federated learning, quantum computing, and more. The book shows how intelligent systems can maximize computing power by leveraging these technologies to process large volumes of data efficiently and autonomously and make real-time decisions. The proposed architectures and frameworks focus on real-time analysis, faster decision-making, enhanced privacy, and efficient data processing.
Download or read book Recommender Systems Handbook written by Francesco Ricci and published by Springer Nature. This book was released on 2022-04-21 with total page 1053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition handbook describes in detail the classical methods as well as extensions and novel approaches that were more recently introduced within this field. It consists of five parts: general recommendation techniques, special recommendation techniques, value and impact of recommender systems, human computer interaction, and applications. The first part presents the most popular and fundamental techniques currently used for building recommender systems, such as collaborative filtering, semantic-based methods, recommender systems based on implicit feedback, neural networks and context-aware methods. The second part of this handbook introduces more advanced recommendation techniques, such as session-based recommender systems, adversarial machine learning for recommender systems, group recommendation techniques, reciprocal recommenders systems, natural language techniques for recommender systems and cross-domain approaches to recommender systems. The third part covers a wide perspective to the evaluation of recommender systems with papers on methods for evaluating recommender systems, their value and impact, the multi-stakeholder perspective of recommender systems, the analysis of the fairness, novelty and diversity in recommender systems. The fourth part contains a few chapters on the human computer dimension of recommender systems, with research on the role of explanation, the user personality and how to effectively support individual and group decision with recommender systems. The last part focusses on application in several important areas, such as, food, music, fashion and multimedia recommendation. This informative third edition handbook provides a comprehensive, yet concise and convenient reference source to recommender systems for researchers and advanced-level students focused on computer science and data science. Professionals working in data analytics that are using recommendation and personalization techniques will also find this handbook a useful tool.
Download or read book Artificial Intelligence in Society written by OECD and published by OECD Publishing. This book was released on 2019-06-11 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
Download or read book Intelligent Computing and Optimization written by Pandian Vasant and published by Springer Nature. This book was released on 2021-02-07 with total page 1332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Third edition of International Conference on Intelligent Computing and Optimization and as a premium fruit, this book, pursue to gather research leaders, experts and scientists on Intelligent Computing and Optimization to share knowledge, experience and current research achievements. Conference and book provide a unique opportunity for the global community to interact and share novel research results, explorations and innovations among colleagues and friends. This book is published by SPRINGER, Advances in Intelligent Systems and Computing. Ca. 100 authors submitted full papers to ICO’2020. That global representation demonstrates the growing interest of the research community here. The book covers innovative and creative research on sustainability, smart cities, meta-heuristics optimization, cyber-security, block chain, big data analytics, IoTs, renewable energy, artificial intelligence, Industry 4.0, modeling and simulation. We editors thank all authors and reviewers for their important service. Best high-quality papers have been selected by the International PC for our premium series with SPRINGER.