EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook of Stillinger Weber Potential Parameters for Two Dimensional Atomic Crystals

Download or read book Handbook of Stillinger Weber Potential Parameters for Two Dimensional Atomic Crystals written by Jin-Wu Jiang and published by BoD – Books on Demand. This book was released on 2017-12-20 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large number of two-dimensional atomic crystals have emerged in recent years. The interatomic potential is a fundamental ingredient for the simulation of these atomic crystals. This book provides the parameters of the Stillinger-Weber potential for 156 two-dimensional atomic crystals, which will help readers to efficiently start up their simulations.

Book Handbook of Functionalized Nanostructured MXenes

Download or read book Handbook of Functionalized Nanostructured MXenes written by Komal Rizwan and published by Springer Nature. This book was released on 2023-07-01 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the various aspects of MXenes nanomaterials and its composites from the fabrication to the potential applications in energy devices, sensors, and environmental remediation. MXenes are two-dimensional (2D) transition metal carbides and nitrides which contains novel combination of properties including great conductivity and mechanical, thermal features of transition metal carbide and nitrides. In addition, MXenes nanomaterials possess high surface area, novel morphology, and layered structure and the functionalized of its surfaces gives it excellent hydrophilic characteristics and high absorption of electromagnetic radiations making them versatile materials for various applications. The beginning part of the book gives an in-depth literature covering the fundamental principles, fabrication, self-assembling strategies of nano-engineered MXenes, and their composites materials. The later chapters describe the chemical functionalization of MXenes nanomaterials for diversified applications such as electromagnetic shielding, energy storage devices (super capacitors, lithium ion batteries, CO2 capture, optical switching, transistors), photo catalysis, drug delivery, implants, tissue engineering, water purification, and sensing applications. It demonstrates that MXene-based advanced architectures promote continuous innovations and provide driving force in different fields particularly in environmental remediation and energy storage devices. This book is essential reading for all chemists, biologists, physicists, and environmental scientists working in the field of nanotechnology, energy, and environmental chemistry. It helps academics and professionals to polish their knowledge with the latest described data. It also helps professionals in developing innovative technologies by keeping in mind the applications of functionalized nanostructured MXenes.

Book Metal Chalcogenide Nanocomposites

Download or read book Metal Chalcogenide Nanocomposites written by Mohammad Ehtisham Khan and published by Elsevier. This book was released on 2023-12-01 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-chalcogenides have exceptional properties and can be used for electronic devices, environmental monitoring, and sensing applications, for energy storage, as electrode materials, in fuel cells, membranes and for photocatalytic degradation of environmental pollutants in the field of waste-water treatment applications. Metal-Chalcogenide Nanocomposites: Fundamentals, Properties, and Industrial Applications focuses on metal chalcogenide nanomaterials for environmental remediation and corrosion applications. The chapters focuses on cost-effective and facile fabrication approaches, their growth mechanisms, optical, electrical, and other important properties and their applications in a broad range of diverse fields such as photocatalysis, photovoltaics, hydrogen production, lithium batteries, energy storage, anticorrosion, and sensor devices. The book will be an important information source for both material scientists and engineers who want to create the next generation of products and devices for energy and environmental applications. Covers fabrication, standard characterization, photocatalytic mechanisms, and environmentally-sustainable fabrication methods Applications covered include environmental, electronics, oil, gas, water treatment, sensing, and many more Includes challenges and future opportunities, which are discussed in detail

Book Electron Crystallography

    Book Details:
  • Author : Devinder Singh
  • Publisher : BoD – Books on Demand
  • Release : 2020-07-22
  • ISBN : 1838801898
  • Pages : 116 pages

Download or read book Electron Crystallography written by Devinder Singh and published by BoD – Books on Demand. This book was released on 2020-07-22 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the quantitative determination of new structures, micro-/nano-crystalline materials pose significant challenges. The different properties of materials are structure-dependent. Traditionally, X-ray crystallography has been used for the analysis of these materials. Electron diffraction is a technique that complements other techniques; for example, single crystal X-ray diffraction and powder X-ray diffraction for determination of structure. Electron diffraction plays a very important role when crystals are very small using single crystal X-ray diffraction or very complex for structure solution by powder X-ray diffraction. With the introduction of advanced methodologies, important methods for crystal structural analysis in the field of electron crystallography have been discovered, such as rotation electron diffraction (RED) and automated electron diffraction tomography (ADT). In recent years, large numbers of crystal structures have been solved using electron crystallography.

Book Ion Solid Interactions

    Book Details:
  • Author : Michael Nastasi
  • Publisher : Cambridge University Press
  • Release : 1996-03-29
  • ISBN : 052137376X
  • Pages : 572 pages

Download or read book Ion Solid Interactions written by Michael Nastasi and published by Cambridge University Press. This book was released on 1996-03-29 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive guide to an important materials science technique for students and researchers.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1991 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Plates and Shells

Download or read book Thin Plates and Shells written by Eduard Ventsel and published by CRC Press. This book was released on 2001-08-24 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli

Book Machine Learning Meets Quantum Physics

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Book A Guide to Monte Carlo Simulations in Statistical Physics

Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2000-08-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.

Book Water in Confining Geometries

Download or read book Water in Confining Geometries written by V. Buch and published by Springer Science & Business Media. This book was released on 2003-04-29 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts in the field, this book gives a wide-ranging and coherent treatment of water in confining geometries. It compiles and relates interdisciplinary work on this hot topic of research important in many areas of science and technology.

Book Broadband Dielectric Spectroscopy

Download or read book Broadband Dielectric Spectroscopy written by Friedrich Kremer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both an introductory course to broadband dielectric spectroscopy and a monograph describing recent dielectric contributions to current topics, this book is the first to cover the topic and has been hotly awaited by the scientific community.

Book X Ray and Neutron Dynamical Diffraction

Download or read book X Ray and Neutron Dynamical Diffraction written by André Authier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.

Book Flowing Matter

    Book Details:
  • Author : Federico Toschi
  • Publisher : Springer Nature
  • Release : 2019-09-25
  • ISBN : 3030233707
  • Pages : 309 pages

Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Book Introduction to Sol Gel Processing

Download or read book Introduction to Sol Gel Processing written by Alain C. Pierre and published by Springer Nature. This book was released on 2020-03-10 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a broad, general introduction to the processing of Sol-Gel technologies. This updated volume serves as a general handbook for researchers and students entering the field. This new edition provides updates in fields that have undergone rapid developments, such as Ceramics, Catalysis, Chromatropgraphy, biomaterials, glass science, and optics. It provides a simple, compact resource that can also be used in graduate-level materials science courses.

Book Numerical Simulation in Molecular Dynamics

Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Book The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation

Download or read book The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation written by Seunghwa Ryu and published by Stanford University. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nucleation has been the subject of intense research because it plays an important role in the dynamics of most first-order phase transitions. The standard theory to describe the nucleation phenomena is the classical nucleation theory (CNT) because it correctly captures the qualitative features of the nucleation process. However potential problems with CNT have been suggested by previous studies. We systematically test the individual components of CNT by computer simulations of the Ising model and find that it accurately predicts the nucleation rate if the correct droplet free energy computed by umbrella sampling is provided as input. This validates the fundamental assumption of CNT that the system can be coarse grained into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Employing similar simulation techniques, we study the dislocation nucleation which is essential to our understanding of plastic deformation, ductility, and mechanical strength of crystalline materials. We show that dislocation nucleation rates can be accurately predicted over a wide range of conditions using CNT with the activation free energy determined by umbrella sampling. Our data reveal very large activation entropies, which contribute a multiplicative factor of many orders of magnitude to the nucleation rate. The activation entropy at constant strain is caused by thermal expansion, with negligible contribution from the vibrational entropy. The activation entropy at constant stress is significantly larger than that at constant strain, as a result of thermal softening. The large activation entropies are caused by anharmonic effects, showing the limitations of the harmonic approximation widely used for rate estimation in solids. Similar behaviors are expected to occur in other nucleation processes in solids.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.