Download or read book Handbook of Nature Inspired Optimization Algorithms The State of the Art written by Ali Mohamed and published by Springer Nature. This book was released on 2022-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving. The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Download or read book Handbook of Nature Inspired Optimization Algorithms The State of the Art written by Ali Wagdy Mohamed and published by Springer Nature. This book was released on 2022-09-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent contributions and significant development, advanced issues, and challenges. In real-world problems and applications, most of the optimization problems involve different types of constraints. These problems are called constrained optimization problems (COPs). The optimization of the constrained optimization problems is considered a challenging task since the optimum solution(s) must be feasible. In their original design, evolutionary algorithms (EAs) are able to solve unconstrained optimization problems effectively. As a result, in the past decade, many researchers have developed a variety of constraint handling techniques, incorporated into (EAs) designs, to counter this deficiency. The main objective for this book is to make available a self-contained collection of modern research addressing the general constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Download or read book Nature Inspired Optimization Algorithms written by Aditya Khamparia and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Download or read book Handbook of Research on Nature Inspired Computing for Economics and Management written by Rennard, Jean-Philippe and published by IGI Global. This book was released on 2006-09-30 with total page 1066 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.
Download or read book Solving Constrained Single Objective Real parameter Optimization Problems written by Ali Mohamed and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nature Inspired Optimization Algorithms written by Xin-She Yang and published by Elsevier. This book was released on 2014-02-17 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Download or read book Handbook of Whale Optimization Algorithm written by Seyedali Mirjalili and published by Elsevier. This book was released on 2023-11-24 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book. Provides in-depth analysis of equations, mathematical models and mechanisms of the Whale Optimization Algorithm Proposes different variants of the Whale Optimization Algorithm to solve binary, multiobjective, noisy, dynamic and combinatorial optimization problems Demonstrates how to design, develop and test different hybrids of Whale Optimization Algorithm Introduces several application areas of the Whale Optimization Algorithm, focusing on sustainability Includes source code from applications and algorithms that is available online
Download or read book Handbook of Intelligent Computing and Optimization for Sustainable Development written by Mukhdeep Singh Manshahia and published by John Wiley & Sons. This book was released on 2022-02-11 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
Download or read book Nature Inspired Optimization Algorithms written by Xin-She Yang and published by Academic Press. This book was released on 2020-09-09 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature-Inspired Optimization Algorithms, Second Edition provides an introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, and multi-objective optimization. This book can serve as an introductory book for graduates, for lecturers in computer science, engineering and natural sciences, and as a source of inspiration for new applications. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding and practical implementation hints - Presents a step-by-step introduction to each algorithm - Includes four new chapters covering mathematical foundations, techniques for solving discrete and combination optimization problems, data mining techniques and their links to optimization algorithms, and the latest deep learning techniques, background and various applications
Download or read book Handbook of Research on Soft Computing and Nature Inspired Algorithms written by Shandilya, Shishir K. and published by IGI Global. This book was released on 2017-03-10 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing and nature-inspired computing both play a significant role in developing a better understanding to machine learning. When studied together, they can offer new perspectives on the learning process of machines. The Handbook of Research on Soft Computing and Nature-Inspired Algorithms is an essential source for the latest scholarly research on applications of nature-inspired computing and soft computational systems. Featuring comprehensive coverage on a range of topics and perspectives such as swarm intelligence, speech recognition, and electromagnetic problem solving, this publication is ideally designed for students, researchers, scholars, professionals, and practitioners seeking current research on the advanced workings of intelligence in computing systems.
Download or read book Handbook of Machine Learning for Computational Optimization written by Vishal Jain and published by CRC Press. This book was released on 2021-11-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Download or read book Handbook of Research on Modeling Analysis and Application of Nature Inspired Metaheuristic Algorithms written by Dash, Sujata and published by IGI Global. This book was released on 2017-08-10 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: The digital age is ripe with emerging advances and applications in technological innovations. Mimicking the structure of complex systems in nature can provide new ideas on how to organize mechanical and personal systems. The Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms is an essential scholarly resource on current algorithms that have been inspired by the natural world. Featuring coverage on diverse topics such as cellular automata, simulated annealing, genetic programming, and differential evolution, this reference publication is ideal for scientists, biological engineers, academics, students, and researchers that are interested in discovering what models from nature influence the current technology-centric world.
Download or read book Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications written by Bhattacharyya, Siddhartha and published by IGI Global. This book was released on 2015-11-03 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
Download or read book Discrete Problems in Nature Inspired Algorithms written by Anupam Prof. Shukla and published by CRC Press. This book was released on 2017-12-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.
Download or read book Frontiers in Nature Inspired Industrial Optimization written by Mahdi Khosravy and published by Springer Nature. This book was released on 2021-08-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a collection of recent applications of nature inspired optimization in industrial fields. Different optimization techniques have been deployed, and different problems have been effectively analyzed. The valuable contributions from researchers focus on three ultimate goals (i) improving the accuracy of these techniques, (ii) achieving higher speed and lower computational complexity, and (iii) working on their proposed applications. The book is helpful for active researchers and practitioners in the field.
Download or read book Nature inspired Metaheuristic Algorithms written by Xin-She Yang and published by Luniver Press. This book was released on 2010 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.
Download or read book Handbook of Moth Flame Optimization Algorithm written by Seyedali Mirjalili and published by CRC Press. This book was released on 2022-09-20 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the literature of the Moth-Flame Optimization algorithm; Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm; Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems; Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm; Introduces several applications areas of the Moth-Flame Optimization algorithm focusing in sustainability.