Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer. This book was released on 2015-05-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Download or read book Handbook of Medical Imaging written by Jacob Beutel and published by SPIE Press. This book was released on 2000 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.
Download or read book The Mathematics of Medical Imaging written by Timothy G. Feeman and published by Springer Science & Business Media. This book was released on 2010 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging is a major part of twenty-first century health care. This introduction explores the mathematical aspects of imaging in medicine to explain approximation methods in addition to computer implementation of inversion algorithms.
Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Download or read book Variational Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2008-09-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Many numerical examples accompany the theory throughout the text. It is geared towards graduate students and researchers in applied mathematics. Researchers in the area of imaging science will also find this book appealing. It can serve as a main text in courses in image processing or as a supplemental text for courses on regularization and inverse problems at the graduate level.
Download or read book Handbook of MRI Pulse Sequences written by Matt A. Bernstein and published by Elsevier. This book was released on 2004-09-21 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems
Download or read book Mathematical and Statistical Methods for Imaging written by Habib Ammari and published by American Mathematical Soc.. This book was released on 2011-07-20 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the NIMS Thematic Workshop on Mathematical and Statistical Methods for Imaging, which was held from August 10-13, 2010, at Inha University, Incheon, Korea. The goal of this volume is to give the reader a deep and unified understanding of the field of imaging and of the analytical and statistical tools used in imaging. It offers a good overview of the current status of the field and of directions for further research. Challenging problems are addressed from analytical, numerical, and statistical perspectives. The articles are devoted to four main areas: analytical investigation of robustness; hypothesis testing and resolution analysis, particularly for anomaly detection; new efficient imaging techniques; and the effects of anisotropy, dissipation, or attenuation in imaging.
Download or read book A Handbook of Mathematical Methods and Problem Solving Tools for Introductory Physics written by Joshua F Whitney and published by Morgan & Claypool Publishers. This book was released on 2016-11-01 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion textbook for an introductory course in physics. It aims to link the theories and models that students learn in class with practical problem-solving techniques. In other words, it should address the common complaint that 'I understand the concepts but I can't do the homework or tests'. The fundamentals of introductory physics courses are addressed in simple and concise terms, with emphasis on how the fundamental concepts and equations should be used to solve physics problems.
Download or read book Introduction to the Mathematics of Medical Imaging written by Charles L. Epstein and published by SIAM. This book was released on 2008-01-01 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.
Download or read book The Radon Transform written by Ronny Ramlau and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-06-17 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
Download or read book New Handbook of Mathematical Psychology Volume 3 Perceptual and Cognitive Processes written by F. Gregory Ashby and published by Cambridge University Press. This book was released on 2023-03-31 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of mathematical psychology began in the 1950s and includes both psychological theorizing, in which mathematics plays a key role, and applied mathematics motivated by substantive problems in psychology. Central to its success was the publication of the first Handbook of Mathematical Psychology in the 1960s. The psychological sciences have since expanded to include new areas of research, and significant advances have been made both in traditional psychological domains and in the applications of the computational sciences to psychology. Upholding the rigor of the original Handbook, the New Handbook of Mathematical Psychology reflects the current state of the field by exploring the mathematical and computational foundations of new developments over the last half-century. The third volume provides up-to-date, foundational chapters on early vision, psychophysics and scaling, multisensory integration, learning and memory, cognitive control, approximate Bayesian computation, and encoding models in neuroimaging.
Download or read book Fourier Methods in Imaging written by Roger L. Easton Jr. and published by John Wiley & Sons. This book was released on 2010-11-18 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists
Download or read book Handbook of Medical Imaging written by and published by Academic Press. This book was released on 2000-10-09 with total page 983 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images
Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Image Processing written by Kristian Bredies and published by Springer. This book was released on 2019-02-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
Download or read book Mathematical and Computational Modeling written by Roderick Melnik and published by John Wiley & Sons. This book was released on 2015-05-18 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.