EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook of Imaging in Biological Mechanics

Download or read book Handbook of Imaging in Biological Mechanics written by Corey P. Neu and published by CRC Press. This book was released on 2014-10-24 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging imaging techniques have opened new fronts to investigate tissues, cells, and proteins. Transformative technologies such as microCT scans, super-resolution microscopy, fluorescence-based tools, and other methods now allow us to study the mechanics of cancer, dissect the origins of cellular force regulation, and examine biological specimens

Book Handbook of Photonics for Biomedical Science

Download or read book Handbook of Photonics for Biomedical Science written by Valery V. Tuchin and published by CRC Press. This book was released on 2010-05-18 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Photonics for Biomedical Science analyzes achievements, new trends, and perspectives of photonics in its application to biomedicine. With contributions from world-renowned experts in the field, the handbook describes advanced biophotonics methods and techniques intensively developed in recent years.Addressing the latest problems in

Book Handbook of Medical Imaging

Download or read book Handbook of Medical Imaging written by Isaac N. Bankman and published by . This book was released on 2000 with total page 901 pages. Available in PDF, EPUB and Kindle. Book excerpt: @Tease:HONORABLE MENTION, ANNUAL AWARDS PROGRAM FOR EXCELLENCE IN PROFESSIONAL/SCHOLARLY PUBLISHING, 2000.

Book Handbook of Nuclear Medicine and Molecular Imaging for Physicists

Download or read book Handbook of Nuclear Medicine and Molecular Imaging for Physicists written by Michael Ljungberg and published by CRC Press. This book was released on 2022-01-24 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art handbook, the first in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, is dedicated to instrumentation and imaging procedures in nuclear medicine. It provides a thorough treatment on the cutting-edge technologies being used within the field, in addition to touching upon the history of their use, their development, and looking ahead to future prospects. This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine. The most comprehensive reference available providing a state-of-the-art overview of the field of nuclear medicine Edited by a leader in the field, with contributions from a team of experienced medical physicists Includes the latest practical research in the field, in addition to explaining fundamental theory and the field's history

Book Mechanobiology Handbook  Second Edition

Download or read book Mechanobiology Handbook Second Edition written by Jiro Nagatomi and published by CRC Press. This book was released on 2018-12-07 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.

Book Mechanics of Biological Systems and Materials   Micro and Nanomechanics   Research Applications

Download or read book Mechanics of Biological Systems and Materials Micro and Nanomechanics Research Applications written by Jacob Notbohm and published by Springer Nature. This book was released on 2021-03-26 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 5 of the Proceedings of the 2020 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of seven from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Cell Mechanics & Traumatic Brain Injury Micromechanical Testing Adhesion and Fracture MEMS Devices and Technology Nano-scale Deformation Mechanisms 1D & 2D Materials Tribology & Wear Research and Applications in Progress

Book Handbook of Medical Imaging

Download or read book Handbook of Medical Imaging written by Jacob Beutel and published by SPIE Press. This book was released on 2000 with total page 1296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.

Book Handbook of Physics in Medicine and Biology

Download or read book Handbook of Physics in Medicine and Biology written by Robert Splinter and published by CRC Press. This book was released on 2010-04-05 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: In considering ways that physics has helped advance biology and medicine, what typically comes to mind are the various tools used by researchers and clinicians. We think of the optics put to work in microscopes, endoscopes, and lasers; the advanced diagnostics permitted through magnetic, x-ray, and ultrasound imaging; and even the nanotools, that a

Book Handbook of Biomedical Nonlinear Optical Microscopy

Download or read book Handbook of Biomedical Nonlinear Optical Microscopy written by Barry R. Masters and published by Oxford University Press. This book was released on 2008-05-19 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.

Book Handbook of X ray Imaging

Download or read book Handbook of X ray Imaging written by Paolo Russo and published by CRC Press. This book was released on 2017-12-14 with total page 1477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world’s leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world. The book's scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging. The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered. This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques. The handbook's editor, Dr. Paolo Russo, has over 30 years’ experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics. Features: Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing The first handbook published to be dedicated to the physics and technology of X-rays Handbook edited by world authority, with contributions from experts in each field

Book Handbook of Biomedical Image Analysis

Download or read book Handbook of Biomedical Image Analysis written by David Wilson and published by Springer Science & Business Media. This book was released on 2007-04-25 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.

Book The Essential Physics of Medical Imaging

Download or read book The Essential Physics of Medical Imaging written by Jerrold T. Bushberg and published by LWW. This book was released on 2022-09-23 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams."--Pub. desc.

Book The Phantoms of Medical and Health Physics

Download or read book The Phantoms of Medical and Health Physics written by Larry A. DeWerd and published by Springer Science & Business Media. This book was released on 2013-11-25 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose and subject of this book is to provide a comprehensive overview of all types of phantoms used in medical imaging, therapy, nuclear medicine and health physics. For ionizing radiation, dosimetry with respect to issues of material composition, shape, and motion/position effects are all highlighted. For medical imaging, each type of technology will need specific materials and designs, and the physics and indications will be explored for each type. Health physics phantoms are concerned with some of the same issues such as material heterogeneity, but also unique issues such as organ-specific radiation dose from sources distributed in other organs. Readers will be able to use this book to select the appropriate phantom from a vendor at a clinic, to learn from as a student, to choose materials for custom phantom design, to design dynamic features, and as a reference for a variety of applications. Some of the information enclosed is found in other sources, divided especially along the three categories of imaging, therapy, and health physics. To our knowledge, even though professionally, many medical physicists need to bridge the three catagories described above.

Book Handbook of Medical Imaging

Download or read book Handbook of Medical Imaging written by Jacob Beutel and published by SPIE Press. This book was released on 2000 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.

Book Ultrasound Elastography for Biomedical Applications and Medicine

Download or read book Ultrasound Elastography for Biomedical Applications and Medicine written by Ivan Z. Nenadic and published by John Wiley & Sons. This book was released on 2019-01-22 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.

Book Biomedical Imaging

    Book Details:
  • Author : Karen M. Mudry
  • Publisher : CRC Press
  • Release : 2003-03-26
  • ISBN : 0203491408
  • Pages : 360 pages

Download or read book Biomedical Imaging written by Karen M. Mudry and published by CRC Press. This book was released on 2003-03-26 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprised of chapters carefully selected from CRC‘s best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging

Book Computational Biomechanics for Medicine

Download or read book Computational Biomechanics for Medicine written by Barry Doyle and published by Springer. This book was released on 2015-04-25 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologiesand advancements. Thisvolumecomprises twelve of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, France, Spain and Switzerland. Some of the interesting topics discussed are:real-time simulations; growth and remodelling of soft tissues; inverse and meshless solutions; medical image analysis; and patient-specific solid mechanics simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.